MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsid Structured version   Visualization version   GIF version

Theorem qsid 8363
Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid (𝐴 / E ) = 𝐴

Proof of Theorem qsid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3497 . . . . . . 7 𝑥 ∈ V
21ecid 8362 . . . . . 6 [𝑥] E = 𝑥
32eqeq2i 2834 . . . . 5 (𝑦 = [𝑥] E ↔ 𝑦 = 𝑥)
4 equcom 2025 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
53, 4bitri 277 . . . 4 (𝑦 = [𝑥] E ↔ 𝑥 = 𝑦)
65rexbii 3247 . . 3 (∃𝑥𝐴 𝑦 = [𝑥] E ↔ ∃𝑥𝐴 𝑥 = 𝑦)
7 vex 3497 . . . 4 𝑦 ∈ V
87elqs 8349 . . 3 (𝑦 ∈ (𝐴 / E ) ↔ ∃𝑥𝐴 𝑦 = [𝑥] E )
9 risset 3267 . . 3 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
106, 8, 93bitr4i 305 . 2 (𝑦 ∈ (𝐴 / E ) ↔ 𝑦𝐴)
1110eqriv 2818 1 (𝐴 / E ) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  wrex 3139   E cep 5464  ccnv 5554  [cec 8287   / cqs 8288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-eprel 5465  df-xp 5561  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ec 8291  df-qs 8295
This theorem is referenced by:  dfcnqs  10564  cnvepima  35609  n0el3  35900
  Copyright terms: Public domain W3C validator