Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsxpid Structured version   Visualization version   GIF version

Theorem qsxpid 30927
Description: The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Assertion
Ref Expression
qsxpid (𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴})

Proof of Theorem qsxpid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = [𝑥](𝐴 × 𝐴))
2 ecxpid 30925 . . . . . . . 8 (𝑥𝐴 → [𝑥](𝐴 × 𝐴) = 𝐴)
32adantr 483 . . . . . . 7 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → [𝑥](𝐴 × 𝐴) = 𝐴)
41, 3eqtrd 2856 . . . . . 6 ((𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = 𝐴)
54rexlimiva 3281 . . . . 5 (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) → 𝑦 = 𝐴)
65adantl 484 . . . 4 ((𝐴 ≠ ∅ ∧ ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴)) → 𝑦 = 𝐴)
7 n0 4310 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
87biimpi 218 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
9 simpl 485 . . . . . . . . . 10 ((𝑦 = 𝐴𝑥𝐴) → 𝑦 = 𝐴)
102adantl 484 . . . . . . . . . 10 ((𝑦 = 𝐴𝑥𝐴) → [𝑥](𝐴 × 𝐴) = 𝐴)
119, 10eqtr4d 2859 . . . . . . . . 9 ((𝑦 = 𝐴𝑥𝐴) → 𝑦 = [𝑥](𝐴 × 𝐴))
1211ex 415 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
1312ancld 553 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝐴 → (𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴))))
1413eximdv 1918 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴))))
158, 14mpan9 509 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝑦 = 𝐴) → ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
16 df-rex 3144 . . . . 5 (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) ↔ ∃𝑥(𝑥𝐴𝑦 = [𝑥](𝐴 × 𝐴)))
1715, 16sylibr 236 . . . 4 ((𝐴 ≠ ∅ ∧ 𝑦 = 𝐴) → ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴))
186, 17impbida 799 . . 3 (𝐴 ≠ ∅ → (∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴) ↔ 𝑦 = 𝐴))
19 vex 3497 . . . 4 𝑦 ∈ V
2019elqs 8349 . . 3 (𝑦 ∈ (𝐴 / (𝐴 × 𝐴)) ↔ ∃𝑥𝐴 𝑦 = [𝑥](𝐴 × 𝐴))
21 velsn 4583 . . 3 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
2218, 20, 213bitr4g 316 . 2 (𝐴 ≠ ∅ → (𝑦 ∈ (𝐴 / (𝐴 × 𝐴)) ↔ 𝑦 ∈ {𝐴}))
2322eqrdv 2819 1 (𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  c0 4291  {csn 4567   × cxp 5553  [cec 8287   / cqs 8288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ec 8291  df-qs 8295
This theorem is referenced by:  qustriv  30929
  Copyright terms: Public domain W3C validator