 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resresdm Structured version   Visualization version   GIF version

Theorem resresdm 5664
 Description: A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
resresdm (𝐹 = (𝐸𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹))

Proof of Theorem resresdm
StepHypRef Expression
1 id 22 . 2 (𝐹 = (𝐸𝐴) → 𝐹 = (𝐸𝐴))
2 dmeq 5356 . . . 4 (𝐹 = (𝐸𝐴) → dom 𝐹 = dom (𝐸𝐴))
32reseq2d 5428 . . 3 (𝐹 = (𝐸𝐴) → (𝐸 ↾ dom 𝐹) = (𝐸 ↾ dom (𝐸𝐴)))
4 resdmres 5663 . . 3 (𝐸 ↾ dom (𝐸𝐴)) = (𝐸𝐴)
53, 4syl6req 2702 . 2 (𝐹 = (𝐸𝐴) → (𝐸𝐴) = (𝐸 ↾ dom 𝐹))
61, 5eqtrd 2685 1 (𝐹 = (𝐸𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523  dom cdm 5143   ↾ cres 5145 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155 This theorem is referenced by:  uhgrspan1  26240
 Copyright terms: Public domain W3C validator