MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq Structured version   Visualization version   GIF version

Theorem reueq 3391
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
reueq (𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem reueq
StepHypRef Expression
1 risset 3057 . 2 (𝐵𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝐵)
2 moeq 3369 . . . 4 ∃*𝑥 𝑥 = 𝐵
3 mormo 3151 . . . 4 (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥𝐴 𝑥 = 𝐵)
42, 3ax-mp 5 . . 3 ∃*𝑥𝐴 𝑥 = 𝐵
5 reu5 3152 . . 3 (∃!𝑥𝐴 𝑥 = 𝐵 ↔ (∃𝑥𝐴 𝑥 = 𝐵 ∧ ∃*𝑥𝐴 𝑥 = 𝐵))
64, 5mpbiran2 953 . 2 (∃!𝑥𝐴 𝑥 = 𝐵 ↔ ∃𝑥𝐴 𝑥 = 𝐵)
71, 6bitr4i 267 1 (𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1480  wcel 1987  ∃*wmo 2470  wrex 2909  ∃!wreu 2910  ∃*wrmo 2911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-rex 2914  df-reu 2915  df-rmo 2916  df-v 3192
This theorem is referenced by:  icoshftf1o  12253
  Copyright terms: Public domain W3C validator