MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuss2 Structured version   Visualization version   GIF version

Theorem reuss2 3769
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
reuss2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reuss2
StepHypRef Expression
1 df-rex 2806 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 df-reu 2807 . . 3 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥(𝑥𝐵𝜓))
31, 2anbi12i 728 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓)))
4 df-ral 2805 . . . . . . 7 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
5 ssel 3466 . . . . . . . . . . . 12 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
6 pm3.2 461 . . . . . . . . . . . . 13 (𝑥𝐵 → (𝜓 → (𝑥𝐵𝜓)))
76imim2d 54 . . . . . . . . . . . 12 (𝑥𝐵 → ((𝜑𝜓) → (𝜑 → (𝑥𝐵𝜓))))
85, 7syl6 34 . . . . . . . . . . 11 (𝐴𝐵 → (𝑥𝐴 → ((𝜑𝜓) → (𝜑 → (𝑥𝐵𝜓)))))
98a2d 29 . . . . . . . . . 10 (𝐴𝐵 → ((𝑥𝐴 → (𝜑𝜓)) → (𝑥𝐴 → (𝜑 → (𝑥𝐵𝜓)))))
109imp4a 611 . . . . . . . . 9 (𝐴𝐵 → ((𝑥𝐴 → (𝜑𝜓)) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))))
1110alimdv 1798 . . . . . . . 8 (𝐴𝐵 → (∀𝑥(𝑥𝐴 → (𝜑𝜓)) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))))
1211imp 443 . . . . . . 7 ((𝐴𝐵 ∧ ∀𝑥(𝑥𝐴 → (𝜑𝜓))) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
134, 12sylan2b 490 . . . . . 6 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
14 euimmo 2414 . . . . . 6 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)) → (∃!𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
1513, 14syl 17 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → (∃!𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
16 eu5 2388 . . . . . 6 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
1716simplbi2 652 . . . . 5 (∃𝑥(𝑥𝐴𝜑) → (∃*𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
1815, 17syl9 74 . . . 4 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → (∃𝑥(𝑥𝐴𝜑) → (∃!𝑥(𝑥𝐵𝜓) → ∃!𝑥(𝑥𝐴𝜑))))
1918imp32 447 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓))) → ∃!𝑥(𝑥𝐴𝜑))
20 df-reu 2807 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2119, 20sylibr 222 . 2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓))) → ∃!𝑥𝐴 𝜑)
223, 21sylan2b 490 1 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1472  wex 1694  wcel 1938  ∃!weu 2362  ∃*wmo 2363  wral 2800  wrex 2801  ∃!wreu 2802  wss 3444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-ral 2805  df-rex 2806  df-reu 2807  df-in 3451  df-ss 3458
This theorem is referenced by:  reuss  3770  reuun1  3771  riotass2  6413
  Copyright terms: Public domain W3C validator