MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimedv Structured version   Visualization version   GIF version

Theorem rspcimedv 3280
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1 (𝜑𝐴𝐵)
rspcimedv.2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
Assertion
Ref Expression
rspcimedv (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcimedv
StepHypRef Expression
1 rspcimdv.1 . . . 4 (𝜑𝐴𝐵)
2 rspcimedv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
32con3d 146 . . . 4 ((𝜑𝑥 = 𝐴) → (¬ 𝜓 → ¬ 𝜒))
41, 3rspcimdv 3279 . . 3 (𝜑 → (∀𝑥𝐵 ¬ 𝜓 → ¬ 𝜒))
54con2d 127 . 2 (𝜑 → (𝜒 → ¬ ∀𝑥𝐵 ¬ 𝜓))
6 dfrex2 2975 . 2 (∃𝑥𝐵 𝜓 ↔ ¬ ∀𝑥𝐵 ¬ 𝜓)
75, 6syl6ibr 240 1 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2892  wrex 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-v 3171
This theorem is referenced by:  rspcedv  3282  scshwfzeqfzo  13366  symgfixfo  17625  slesolex  20246  clwlkfoclwwlk  26135  el2wlkonot  26159  el2spthonot  26160  el2wlkonotot0  26162  usg2spot2nb  26355  usgr2pthlem  40968  clwlksfoclwwlk  41269  fusgr2wsp2nb  41497
  Copyright terms: Public domain W3C validator