![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rzalf | Structured version Visualization version GIF version |
Description: A version of rzal 4106 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
rzalf.1 | ⊢ Ⅎ𝑥 𝐴 = ∅ |
Ref | Expression |
---|---|
rzalf | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzalf.1 | . 2 ⊢ Ⅎ𝑥 𝐴 = ∅ | |
2 | ne0i 3954 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
3 | 2 | necon2bi 2853 | . . 3 ⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) |
4 | 3 | pm2.21d 118 | . 2 ⊢ (𝐴 = ∅ → (𝑥 ∈ 𝐴 → 𝜑)) |
5 | 1, 4 | ralrimi 2986 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 ∀wral 2941 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: stoweidlem18 40553 stoweidlem28 40563 stoweidlem55 40590 |
Copyright terms: Public domain | W3C validator |