Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rzalf Structured version   Visualization version   GIF version

Theorem rzalf 39490
 Description: A version of rzal 4106 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
rzalf.1 𝑥 𝐴 = ∅
Assertion
Ref Expression
rzalf (𝐴 = ∅ → ∀𝑥𝐴 𝜑)

Proof of Theorem rzalf
StepHypRef Expression
1 rzalf.1 . 2 𝑥 𝐴 = ∅
2 ne0i 3954 . . . 4 (𝑥𝐴𝐴 ≠ ∅)
32necon2bi 2853 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴)
43pm2.21d 118 . 2 (𝐴 = ∅ → (𝑥𝐴𝜑))
51, 4ralrimi 2986 1 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  ∀wral 2941  ∅c0 3948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-v 3233  df-dif 3610  df-nul 3949 This theorem is referenced by:  stoweidlem18  40553  stoweidlem28  40563  stoweidlem55  40590
 Copyright terms: Public domain W3C validator