MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbal1 Structured version   Visualization version   GIF version

Theorem sbal1 2459
Description: A theorem used in elimination of disjoint variable restriction on 𝑥 and 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 15-May-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2018.)
Assertion
Ref Expression
sbal1 (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbal1
StepHypRef Expression
1 sb4b 2357 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
2 nfnae 2317 . . . . . 6 𝑦 ¬ ∀𝑥 𝑥 = 𝑧
3 nfeqf2 2296 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥 𝑦 = 𝑧)
4 19.21t 2071 . . . . . . . 8 (Ⅎ𝑥 𝑦 = 𝑧 → (∀𝑥(𝑦 = 𝑧𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑)))
54bicomd 213 . . . . . . 7 (Ⅎ𝑥 𝑦 = 𝑧 → ((𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥(𝑦 = 𝑧𝜑)))
63, 5syl 17 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑧 → ((𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥(𝑦 = 𝑧𝜑)))
72, 6albid 2088 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑧 → (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
81, 7sylan9bbr 736 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
9 nfnae 2317 . . . . . . 7 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
10 sb4b 2357 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧𝜑)))
119, 10albid 2088 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥𝑦(𝑦 = 𝑧𝜑)))
12 alcom 2034 . . . . . 6 (∀𝑥𝑦(𝑦 = 𝑧𝜑) ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑))
1311, 12syl6bb 276 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
1413adantl 482 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
158, 14bitr4d 271 . . 3 ((¬ ∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
1615ex 450 . 2 (¬ ∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)))
17 sbequ12 2108 . . . 4 (𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑))
1817sps 2053 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑))
19 sbequ12 2108 . . . . 5 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
2019sps 2053 . . . 4 (∀𝑦 𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
2120dral2 2323 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
2218, 21bitr3d 270 . 2 (∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
2316, 22pm2.61d2 172 1 (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1478  wnf 1705  [wsb 1877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878
This theorem is referenced by:  sbal  2461
  Copyright terms: Public domain W3C validator