Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie2g Structured version   Visualization version   GIF version

Theorem sbcie2g 3451
 Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3452 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
sbcie2g.1 (𝑥 = 𝑦 → (𝜑𝜓))
sbcie2g.2 (𝑦 = 𝐴 → (𝜓𝜒))
Assertion
Ref Expression
sbcie2g (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜒,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem sbcie2g
StepHypRef Expression
1 dfsbcq 3419 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 sbcie2g.2 . 2 (𝑦 = 𝐴 → (𝜓𝜒))
3 sbsbc 3421 . . 3 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
4 nfv 1840 . . . 4 𝑥𝜓
5 sbcie2g.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
64, 5sbie 2407 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
73, 6bitr3i 266 . 2 ([𝑦 / 𝑥]𝜑𝜓)
81, 2, 7vtoclbg 3253 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480  [wsb 1877   ∈ wcel 1987  [wsbc 3417 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-v 3188  df-sbc 3418 This theorem is referenced by:  sbcel2gv  3478  csbie2g  3545  brab1  4660  bnj90  30493  bnj124  30646  riotasvd  33719
 Copyright terms: Public domain W3C validator