HomeHome Metamath Proof Explorer
Theorem List (p. 39 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28695)
  Hilbert Space Explorer  Hilbert Space Explorer
(28696-30218)
  Users' Mathboxes  Users' Mathboxes
(30219-44926)
 

Theorem List for Metamath Proof Explorer - 3801-3900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbc6g 3801* An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
 
Theoremsbc6 3802* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
𝐴 ∈ V       ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))
 
Theoremsbc7 3803* An equivalence for class substitution in the spirit of df-clab 2800. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴[𝑦 / 𝑥]𝜑))
 
Theoremcbvsbcw 3804* Change bound variables in a wff substitution. Version of cbvsbc 3806 with a disjoint variable condition, which does not require ax-13 2390. (Contributed by Jeff Hankins, 19-Sep-2009.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
 
Theoremcbvsbcvw 3805* Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv 3807 with a disjoint variable condition, which does not require ax-13 2390. (Contributed by NM, 30-Sep-2008.) (Revised by Gino Giotto, 10-Jan-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
 
Theoremcbvsbc 3806 Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 2390. Use the weaker cbvsbcw 3804 when possible. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
 
Theoremcbvsbcv 3807* Change the bound variable of a class substitution using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2390. Use the weaker cbvsbcvw 3805 when possible. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
 
Theoremsbciegft 3808* Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3809.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
 
Theoremsbciegf 3809* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
 
Theoremsbcieg 3810* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
 
Theoremsbcie2g 3811* Conversion of implicit substitution to explicit class substitution. This version of sbcie 3812 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝐴 → (𝜓𝜒))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))
 
Theoremsbcie 3812* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑𝜓)
 
Theoremsbciedf 3813* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
 
Theoremsbcied 3814* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
 
Theoremsbcied2 3815* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥 = 𝐵) → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
 
Theoremelrabsf 3816 Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 3676 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
𝑥𝐵       (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵[𝐴 / 𝑥]𝜑))
 
Theoremeqsbc3 3817* Substitution applied to an atomic wff. Class version of eqsb3 2939. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2390. (Revised by Wolf Lammen, 29-Apr-2023.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
 
Theoremeqsbc3OLD 3818* Obsolete version of eqsbc3 3817 as of 29-Apr-2023. (Contributed by Andrew Salmon, 29-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
 
Theoremsbcng 3819 Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
(𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
 
Theoremsbcimg 3820 Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcan 3821 Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcor 3822 Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcbig 3823 Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcn1 3824 Move negation in and out of class substitution. One direction of sbcng 3819 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)
 
Theoremsbcim1 3825 Distribution of class substitution over implication. One direction of sbcimg 3820 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcbid 3826 Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcbidv 3827* Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2177. (Revised by Gino Giotto, 1-Dec-2023.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
TheoremsbcbidvOLD 3828* Obsolete version of sbcbidv 3827 as of 1-Dec-2023. (Contributed by NM, 29-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcbii 3829 Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.)
(𝜑𝜓)       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
 
Theoremsbcbi1 3830 Distribution of class substitution over biconditional. One direction of sbcbig 3823 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcbi2 3831 Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.)
(∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcbi2OLD 3832 Obsolete proof of sbcbi2 3831 as of 4-May-2023. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcal 3833* Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)
 
Theoremsbcex2 3834* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
 
Theoremsbceqal 3835* Class version of one implication of equvelv 2038. (Contributed by Andrew Salmon, 28-Jun-2011.)
(𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
 
Theoremsbeqalb 3836* Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
(𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → 𝐴 = 𝐵))
 
Theoremeqsbc3r 3837* eqsbc3 3817 with setvar variable on right side of equals sign. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
 
Theoremsbc3an 3838 Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcel1v 3839* Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2390. (Revised by Wolf Lammen, 30-Apr-2023.)
([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
 
Theoremsbcel1vOLD 3840* Obsolete version of sbcel1v 3839 as of 30-Apr-2023. (Contributed by NM, 17-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
 
Theoremsbcel2gv 3841* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
 
Theoremsbcel21v 3842* Class substitution into a membership relation. One direction of sbcel2gv 3841 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
 
Theoremsbcimdv 3843* Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1811). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbctt 3844 Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbcgf 3845 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝑥𝜑       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbc19.21g 3846 Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.)
𝑥𝜑       (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcg 3847* Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3845. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbcgfi 3848 Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.)
𝐴 ∈ V    &   𝑥𝜑       ([𝐴 / 𝑥]𝜑𝜑)
 
Theoremsbc2iegf 3849* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.)
𝑥𝜓    &   𝑦𝜓    &   𝑥 𝐵𝑊    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
 
Theoremsbc2ie 3850* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
 
Theoremsbc2iedv 3851* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))       (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓𝜒))
 
Theoremsbc3ie 3852* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑𝜓)
 
Theoremsbccomlem 3853* Lemma for sbccom 3854. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbccom 3854* Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbcralt 3855* Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrext 3856* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) (Revised by NM, 18-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
(𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcralg 3857* Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrex 3858* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)
 
Theoremsbcreu 3859* Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑)
 
Theoremreu8nf 3860* Restricted uniqueness using implicit substitution. This version of reu8 3724 uses a non-freeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.)
𝑥𝜓    &   𝑥𝜒    &   (𝑥 = 𝑤 → (𝜑𝜒))    &   (𝑤 = 𝑦 → (𝜒𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
 
Theoremsbcabel 3861* Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
𝑥𝐵       (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵 ↔ {𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵))
 
Theoremrspsbc 3862* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2073 and spsbc 3785. See also rspsbca 3863 and rspcsbela 4387. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
 
Theoremrspsbca 3863* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
 
Theoremrspesbca 3864* Existence form of rspsbca 3863. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
 
Theoremspesbc 3865 Existence form of spsbc 3785. (Contributed by Mario Carneiro, 18-Nov-2016.)
([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremspesbcd 3866 form of spsbc 3785. (Contributed by Mario Carneiro, 9-Feb-2017.)
(𝜑[𝐴 / 𝑥]𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theoremsbcth2 3867* A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝑥𝐵𝜑)       (𝐴𝐵[𝐴 / 𝑥]𝜑)
 
Theoremra4v 3868* Version of ra4 3869 with a disjoint variable condition, requiring fewer axioms. This is stdpc5v 1939 for a restricted domain. (Contributed by BJ, 27-Mar-2020.)
(∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremra4 3869 Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is the axiom stdpc5 2208 of standard predicate calculus for a restricted domain. See ra4v 3868 for a version requiring fewer axioms. (Contributed by NM, 16-Jan-2004.) (Proof shortened by BJ, 27-Mar-2020.)
𝑥𝜑       (∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremrmo2 3870* Alternate definition of restricted "at most one." Note that ∃*𝑥𝐴𝜑 is not equivalent to 𝑦𝐴𝑥𝐴(𝜑𝑥 = 𝑦) (in analogy to reu6 3717); to see this, let 𝐴 be the empty set. However, one direction of this pattern holds; see rmo2i 3871. (Contributed by NM, 17-Jun-2017.)
𝑦𝜑       (∃*𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
 
Theoremrmo2i 3871* Condition implying restricted "at most one." (Contributed by NM, 17-Jun-2017.)
𝑦𝜑       (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 
Theoremrmo3 3872* Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) Avoid ax-13 2390. (Revised by Wolf Lammen, 30-Apr-2023.)
𝑦𝜑       (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremrmo3OLD 3873* Obsolete version of rmo3 3872 as of 30-Apr-2023. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑦𝜑       (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremrmob 3874* Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
 
Theoremrmoi 3875* Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
 
Theoremrmob2 3876* Consequence of "restricted at most one." (Contributed by Thierry Arnoux, 9-Dec-2019.)
(𝑥 = 𝐵 → (𝜓𝜒))    &   (𝜑𝐵𝐴)    &   (𝜑 → ∃*𝑥𝐴 𝜓)    &   (𝜑𝑥𝐴)    &   (𝜑𝜓)       (𝜑 → (𝑥 = 𝐵𝜒))
 
Theoremrmoi2 3877* Consequence of "restricted at most one." (Contributed by Thierry Arnoux, 9-Dec-2019.)
(𝑥 = 𝐵 → (𝜓𝜒))    &   (𝜑𝐵𝐴)    &   (𝜑 → ∃*𝑥𝐴 𝜓)    &   (𝜑𝑥𝐴)    &   (𝜑𝜓)    &   (𝜑𝜒)       (𝜑𝑥 = 𝐵)
 
Theoremrmoanim 3878* Introduction of a conjunct into restricted "at most one" quantifier, analogous to moanim 2705. (Contributed by Alexander van der Vekens, 25-Jun-2017.) Avoid ax-10 2145 and ax-11 2161. (Revised by Gino Giotto, 24-Aug-2023.)
𝑥𝜑       (∃*𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝐴 𝜓))
 
TheoremrmoanimALT 3879* Alternate proof of rmoanim 3878, shorter but requiring ax-10 2145 and ax-11 2161. (Contributed by Alexander van der Vekens, 25-Jun-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑥𝜑       (∃*𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝐴 𝜓))
 
Theoremreuan 3880* Introduction of a conjunct into restricted unique existential quantifier, analogous to euan 2706. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
𝑥𝜑       (∃!𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝐴 𝜓))
 
Theorem2reu1 3881* Double restricted existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one, analogous to 2eu1 2735. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
(∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
 
Theorem2reu2 3882* Double restricted existential uniqueness, analogous to 2eu2 2737. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
(∃!𝑦𝐵𝑥𝐴 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥𝐴𝑦𝐵 𝜑))
 
2.1.10  Proper substitution of classes for sets into classes
 
Syntaxcsb 3883 Extend class notation to include the proper substitution of a class for a set into another class.
class 𝐴 / 𝑥𝐵
 
Definitiondf-csb 3884* Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3772, to prevent ambiguity. Theorem sbcel1g 4365 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4358). Theorem sbccsb 4385 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
 
Theoremcsb2 3885* Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
 
Theoremcsbeq1 3886 Analogue of dfsbcq 3774 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcsbeq1d 3887 Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
(𝜑𝐴 = 𝐵)       (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcsbeq2 3888 Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
(∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2d 3889 Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝑥𝜑    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2dv 3890* Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
(𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2i 3891 Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐵 = 𝐶       𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶
 
Theoremcsbeq12dv 3892* Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐴 / 𝑥𝐵 = 𝐶 / 𝑥𝐷)
 
Theoremcbvcsbw 3893* Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. Version of cbvcsb 3894 with a disjoint variable condition, which does not require ax-13 2390. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsb 3894 Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. Usage of this theorem is discouraged because it depends on ax-13 2390. Use the weaker cbvcsbw 3893 when possible. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) (New usage is discouraged.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsbv 3895* Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
 
Theoremcsbid 3896 Analogue of sbid 2257 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
𝑥 / 𝑥𝐴 = 𝐴
 
Theoremcsbeq1a 3897 Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremcsbcow 3898* Composition law for chained substitutions into a class. Version of csbco 3899 with a disjoint variable condition, which does not require ax-13 2390. (Contributed by NM, 10-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.)
𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 
Theoremcsbco 3899* Composition law for chained substitutions into a class. Usage of this theorem is discouraged because it depends on ax-13 2390. Use the weaker csbcow 3898 when possible. (Contributed by NM, 10-Nov-2005.) (New usage is discouraged.)
𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 
Theoremcsbtt 3900 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44926
  Copyright terms: Public domain < Previous  Next >