Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcim2g Structured version   Visualization version   GIF version

Theorem sbcim2g 38216
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3464. sbcim2g 38216 is sbcim2gVD 38580 without virtual deductions and was automatically derived from sbcim2gVD 38580 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcim2g (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))

Proof of Theorem sbcim2g
StepHypRef Expression
1 sbcimg 3464 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
21biimpd 219 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
3 sbcimg 3464 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
4 imbi2 338 . . . 4 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
54biimpcd 239 . . 3 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) → (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
62, 3, 5syl6ci 71 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
7 idd 24 . . . 4 (𝐴𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
8 biimpr 210 . . . 4 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) → [𝐴 / 𝑥](𝜓𝜒)))
93, 7, 8ee13 38178 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
109, 1sylibrd 249 . 2 (𝐴𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒))))
116, 10impbid 202 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1992  [wsbc 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-12 2049  ax-13 2250  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-v 3193  df-sbc 3423
This theorem is referenced by:  trsbc  38218  trsbcVD  38582
  Copyright terms: Public domain W3C validator