MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcreu Structured version   Visualization version   GIF version

Theorem sbcreu 3861
Description: Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcreu ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem sbcreu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3784 . 2 ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑𝐴 ∈ V)
2 reurex 3433 . . 3 (∃!𝑦𝐵 [𝐴 / 𝑥]𝜑 → ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)
3 sbcex 3784 . . . 4 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
43rexlimivw 3284 . . 3 (∃𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V)
52, 4syl 17 . 2 (∃!𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V)
6 dfsbcq2 3777 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃!𝑦𝐵 𝜑[𝐴 / 𝑥]∃!𝑦𝐵 𝜑))
7 dfsbcq2 3777 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
87reubidv 3391 . . 3 (𝑧 = 𝐴 → (∃!𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
9 nfcv 2979 . . . . 5 𝑥𝐵
10 nfs1v 2160 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
119, 10nfreuw 3376 . . . 4 𝑥∃!𝑦𝐵 [𝑧 / 𝑥]𝜑
12 sbequ12 2253 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
1312reubidv 3391 . . . 4 (𝑥 = 𝑧 → (∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝑧 / 𝑥]𝜑))
1411, 13sbiev 2330 . . 3 ([𝑧 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝑧 / 𝑥]𝜑)
156, 8, 14vtoclbg 3571 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
161, 5, 15pm5.21nii 382 1 ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  [wsb 2069  wcel 2114  wrex 3141  ∃!wreu 3142  Vcvv 3496  [wsbc 3774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-v 3498  df-sbc 3775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator