Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snsssng Structured version   Visualization version   GIF version

Theorem snsssng 30259
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.)
Assertion
Ref Expression
snsssng ((𝐴𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵)

Proof of Theorem snsssng
StepHypRef Expression
1 sssn 4733 . 2 ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵}))
2 snnzg 4684 . . . . . 6 (𝐴𝑉 → {𝐴} ≠ ∅)
32neneqd 3011 . . . . 5 (𝐴𝑉 → ¬ {𝐴} = ∅)
43pm2.21d 121 . . . 4 (𝐴𝑉 → ({𝐴} = ∅ → 𝐴 = 𝐵))
5 sneqrg 4744 . . . 4 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
64, 5jaod 855 . . 3 (𝐴𝑉 → (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵))
76imp 409 . 2 ((𝐴𝑉 ∧ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) → 𝐴 = 𝐵)
81, 7sylan2b 595 1 ((𝐴𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wss 3912  c0 4267  {csn 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-v 3475  df-dif 3915  df-in 3919  df-ss 3928  df-nul 4268  df-sn 4542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator