![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifsn | Structured version Visualization version GIF version |
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) |
Ref | Expression |
---|---|
ssdifsn | ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3625 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝐵 ∖ {𝐶})) | |
2 | eldifsn 4350 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ {𝐶}) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐶)) | |
3 | 2 | ralbii 3009 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ (𝐵 ∖ {𝐶}) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
4 | 1, 3 | bitri 264 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
5 | r19.26 3093 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) | |
6 | 4, 5 | bitri 264 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) |
7 | dfss3 3625 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
8 | 7 | bicomi 214 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ 𝐴 ⊆ 𝐵) |
9 | neirr 2832 | . . . . 5 ⊢ ¬ 𝐶 ≠ 𝐶 | |
10 | neeq1 2885 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝑥 ≠ 𝐶 ↔ 𝐶 ≠ 𝐶)) | |
11 | 10 | rspccv 3337 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶 → (𝐶 ∈ 𝐴 → 𝐶 ≠ 𝐶)) |
12 | 9, 11 | mtoi 190 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶 → ¬ 𝐶 ∈ 𝐴) |
13 | nelelne 2921 | . . . . 5 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ≠ 𝐶)) | |
14 | 13 | ralrimiv 2994 | . . . 4 ⊢ (¬ 𝐶 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶) |
15 | 12, 14 | impbii 199 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶 ↔ ¬ 𝐶 ∈ 𝐴) |
16 | 8, 15 | anbi12i 733 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
17 | 6, 16 | bitri 264 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-sn 4211 |
This theorem is referenced by: logdivsqrle 30856 elsetrecslem 42770 |
Copyright terms: Public domain | W3C validator |