Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dfrabf Structured version   Visualization version   GIF version

Theorem wl-dfrabf 34900
Description: Alternate definition of restricted class abstraction (df-wl-rab 34896), when 𝑥 is not free in 𝐴. (Contributed by Wolf Lammen, 29-May-2023.)
Assertion
Ref Expression
wl-dfrabf (𝑥𝐴 → {𝑥 : 𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)})

Proof of Theorem wl-dfrabf
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wl-dfrabsb 34897 . 2 {𝑥 : 𝐴𝜑} = {𝑦 ∣ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)}
2 nfnfc1 2979 . . . . . . 7 𝑥𝑥𝐴
3 id 22 . . . . . . 7 (𝑥𝐴𝑥𝐴)
42, 3wl-clelsb3df 34899 . . . . . 6 (𝑥𝐴 → ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴))
5 clelsb3 2939 . . . . . 6 ([𝑧 / 𝑦]𝑦𝐴𝑧𝐴)
64, 5syl6rbbr 292 . . . . 5 (𝑥𝐴 → ([𝑧 / 𝑦]𝑦𝐴 ↔ [𝑧 / 𝑥]𝑥𝐴))
7 sbco2vv 2107 . . . . . 6 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
87a1i 11 . . . . 5 (𝑥𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
96, 8anbi12d 632 . . . 4 (𝑥𝐴 → (([𝑧 / 𝑦]𝑦𝐴 ∧ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)))
10 df-clab 2799 . . . . 5 (𝑧 ∈ {𝑦 ∣ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)} ↔ [𝑧 / 𝑦](𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
11 sban 2085 . . . . 5 ([𝑧 / 𝑦](𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑦]𝑦𝐴 ∧ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑))
1210, 11bitri 277 . . . 4 (𝑧 ∈ {𝑦 ∣ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)} ↔ ([𝑧 / 𝑦]𝑦𝐴 ∧ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑))
13 df-clab 2799 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ [𝑧 / 𝑥](𝑥𝐴𝜑))
14 sban 2085 . . . . 5 ([𝑧 / 𝑥](𝑥𝐴𝜑) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
1513, 14bitri 277 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
169, 12, 153bitr4g 316 . . 3 (𝑥𝐴 → (𝑧 ∈ {𝑦 ∣ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)}))
1716eqrdv 2818 . 2 (𝑥𝐴 → {𝑦 ∣ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)} = {𝑥 ∣ (𝑥𝐴𝜑)})
181, 17syl5eq 2867 1 (𝑥𝐴 → {𝑥 : 𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  [wsb 2068  wcel 2113  {cab 2798  wnfc 2960  {wl-crab 34871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-13 2389  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-wl-rab 34896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator