MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sban Structured version   Visualization version   GIF version

Theorem sban 2398
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sban ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))

Proof of Theorem sban
StepHypRef Expression
1 sbn 2390 . . 3 ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ [𝑦 / 𝑥](𝜑 → ¬ 𝜓))
2 sbim 2394 . . . 4 ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓))
3 sbn 2390 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓)
43imbi2i 326 . . . 4 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓))
52, 4bitri 264 . . 3 ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓))
61, 5xchbinx 324 . 2 ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓))
7 df-an 386 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
87sbbii 1884 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓))
9 df-an 386 . 2 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓))
106, 8, 93bitr4i 292 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  [wsb 1877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-sb 1878
This theorem is referenced by:  sb3an  2399  sbbi  2400  sbabel  2789  cbvreu  3161  sbcan  3465  rmo3  3514  inab  3877  difab  3878  exss  4902  inopab  5222  mo5f  29213  rmo3f  29224  iuninc  29265  suppss2f  29322  fmptdF  29339  disjdsct  29364  esumpfinvalf  29961  measiuns  30103  ballotlemodife  30382  sb5ALT  38252  sbcangOLD  38260  2uasbanh  38298  2uasbanhVD  38669  sb5ALTVD  38671  ellimcabssub0  39285
  Copyright terms: Public domain W3C validator