Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunres Structured version   Visualization version   GIF version

Theorem wunres 9500
 Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunres (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunres
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . 2 (𝜑𝐴𝑈)
3 resss 5383 . . 3 (𝐴𝐵) ⊆ 𝐴
43a1i 11 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 4wunss 9481 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1987   ⊆ wss 3556   ↾ cres 5078  WUnicwun 9469 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-v 3188  df-in 3563  df-ss 3570  df-pw 4134  df-uni 4405  df-tr 4715  df-res 5088  df-wun 9471 This theorem is referenced by:  wunsets  15824
 Copyright terms: Public domain W3C validator