MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsn Structured version   Visualization version   GIF version

Theorem wunsn 9482
Description: A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsn (𝜑 → {𝐴} ∈ 𝑈)

Proof of Theorem wunsn
StepHypRef Expression
1 dfsn2 4161 . 2 {𝐴} = {𝐴, 𝐴}
2 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
3 wununi.2 . . 3 (𝜑𝐴𝑈)
42, 3, 3wunpr 9475 . 2 (𝜑 → {𝐴, 𝐴} ∈ 𝑈)
51, 4syl5eqel 2702 1 (𝜑 → {𝐴} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  {csn 4148  {cpr 4150  WUnicwun 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-v 3188  df-un 3560  df-in 3562  df-ss 3569  df-sn 4149  df-pr 4151  df-uni 4403  df-tr 4713  df-wun 9468
This theorem is referenced by:  wunsuc  9483  wunfi  9487  wunop  9488  wuntpos  9500  wunsets  15821  1strwunbndx  15902  catcoppccl  16679
  Copyright terms: Public domain W3C validator