![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > 3eqtr4i | Unicode version |
Description: Transitivity of equality. |
Ref | Expression |
---|---|
3eqtr4i.1 |
![]() ![]() ![]() ![]() |
3eqtr4i.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4i.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4i.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr4i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr4i.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtypri 71 |
. 2
![]() ![]() ![]() ![]() |
4 | 3eqtr4i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 4 | eqtypi 69 |
. . . . 5
![]() ![]() ![]() ![]() |
6 | 3eqtr4i.4 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | eqtypri 71 |
. . . 4
![]() ![]() ![]() ![]() |
8 | 7, 6 | eqcomi 70 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 4, 8 | eqtri 85 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 3, 2, 9 | eqtri 85 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
This theorem depends on definitions: df-ov 65 |
This theorem is referenced by: 3eqtr3i 87 oveq123 88 hbxfrf 97 leqf 169 exnal 188 |
Copyright terms: Public domain | W3C validator |