Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > 3eqtr4i | Unicode version |
Description: Transitivity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
3eqtr4i.1 | |
3eqtr4i.2 | |
3eqtr4i.3 | |
3eqtr4i.4 |
Ref | Expression |
---|---|
3eqtr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.1 | . . 3 | |
2 | 3eqtr4i.3 | . . 3 | |
3 | 1, 2 | eqtypri 81 | . 2 |
4 | 3eqtr4i.2 | . . 3 | |
5 | 1, 4 | eqtypi 78 | . . . . 5 |
6 | 3eqtr4i.4 | . . . . 5 | |
7 | 5, 6 | eqtypri 81 | . . . 4 |
8 | 7, 6 | eqcomi 79 | . . 3 |
9 | 1, 4, 8 | eqtri 95 | . 2 |
10 | 3, 2, 9 | eqtri 95 | 1 |
Colors of variables: type var term |
Syntax hints: ke 7 kbr 9 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: 3eqtr3i 97 oveq123 98 hbxfrf 107 leqf 181 exnal 201 |
Copyright terms: Public domain | W3C validator |