| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > 3eqtr4i | Unicode version | ||
| Description: Transitivity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 |
|
| 3eqtr4i.2 |
|
| 3eqtr4i.3 |
|
| 3eqtr4i.4 |
|
| Ref | Expression |
|---|---|
| 3eqtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.1 |
. . 3
| |
| 2 | 3eqtr4i.3 |
. . 3
| |
| 3 | 1, 2 | eqtypri 81 |
. 2
|
| 4 | 3eqtr4i.2 |
. . 3
| |
| 5 | 1, 4 | eqtypi 78 |
. . . . 5
|
| 6 | 3eqtr4i.4 |
. . . . 5
| |
| 7 | 5, 6 | eqtypri 81 |
. . . 4
|
| 8 | 7, 6 | eqcomi 79 |
. . 3
|
| 9 | 1, 4, 8 | eqtri 95 |
. 2
|
| 10 | 3, 2, 9 | eqtri 95 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: 3eqtr3i 97 oveq123 98 hbxfrf 107 leqf 181 exnal 201 |
| Copyright terms: Public domain | W3C validator |