| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > hbxfrf | Unicode version | ||
| Description: Transfer a hypothesis builder to an equivalent expression. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| hbxfr.1 |
|
| hbxfr.2 |
|
| hbxfrf.3 |
|
| hbxfrf.4 |
|
| Ref | Expression |
|---|---|
| hbxfrf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfr.1 |
. . . . 5
| |
| 2 | hbxfrf.3 |
. . . . 5
| |
| 3 | 1, 2 | eqtypi 78 |
. . . 4
|
| 4 | 3 | wl 66 |
. . 3
|
| 5 | hbxfr.2 |
. . 3
| |
| 6 | 4, 5 | wc 50 |
. 2
|
| 7 | hbxfrf.4 |
. 2
| |
| 8 | 1 | wl 66 |
. . . 4
|
| 9 | 1, 2 | leq 91 |
. . . 4
|
| 10 | 8, 5, 9 | ceq1 89 |
. . 3
|
| 11 | 7 | ax-cb1 29 |
. . . 4
|
| 12 | 11 | wctl 33 |
. . 3
|
| 13 | 10, 12 | adantl 56 |
. 2
|
| 14 | 2, 12 | adantl 56 |
. 2
|
| 15 | 6, 7, 13, 14 | 3eqtr4i 96 |
1
|
| Colors of variables: type var term |
| Syntax hints: kc 5
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: hbxfr 108 hbov 111 hbct 155 |
| Copyright terms: Public domain | W3C validator |