Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > hbxfrf | Unicode version |
Description: Transfer a hypothesis builder to an equivalent expression. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
hbxfr.1 | |
hbxfr.2 | |
hbxfrf.3 | |
hbxfrf.4 |
Ref | Expression |
---|---|
hbxfrf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfr.1 | . . . . 5 | |
2 | hbxfrf.3 | . . . . 5 | |
3 | 1, 2 | eqtypi 78 | . . . 4 |
4 | 3 | wl 66 | . . 3 |
5 | hbxfr.2 | . . 3 | |
6 | 4, 5 | wc 50 | . 2 |
7 | hbxfrf.4 | . 2 | |
8 | 1 | wl 66 | . . . 4 |
9 | 1, 2 | leq 91 | . . . 4 |
10 | 8, 5, 9 | ceq1 89 | . . 3 |
11 | 7 | ax-cb1 29 | . . . 4 |
12 | 11 | wctl 33 | . . 3 |
13 | 10, 12 | adantl 56 | . 2 |
14 | 2, 12 | adantl 56 | . 2 |
15 | 6, 7, 13, 14 | 3eqtr4i 96 | 1 |
Colors of variables: type var term |
Syntax hints: kc 5 kl 6 ke 7 kbr 9 kct 10 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: hbxfr 108 hbov 111 hbct 155 |
Copyright terms: Public domain | W3C validator |