HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  3eqtr3i Unicode version

Theorem 3eqtr3i 97
Description: Transitivity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.)
Hypotheses
Ref Expression
3eqtr4i.1 |- A:al
3eqtr4i.2 |- R |= [A = B]
3eqtr3i.3 |- R |= [A = S]
3eqtr3i.4 |- R |= [B = T]
Assertion
Ref Expression
3eqtr3i |- R |= [S = T]

Proof of Theorem 3eqtr3i
StepHypRef Expression
1 3eqtr4i.1 . 2 |- A:al
2 3eqtr4i.2 . 2 |- R |= [A = B]
3 3eqtr3i.3 . . 3 |- R |= [A = S]
41, 3eqcomi 79 . 2 |- R |= [S = A]
51, 2eqtypi 78 . . 3 |- B:al
6 3eqtr3i.4 . . 3 |- R |= [B = T]
75, 6eqcomi 79 . 2 |- R |= [T = B]
81, 2, 4, 73eqtr4i 96 1 |- R |= [S = T]
Colors of variables: type var term
Syntax hints:   = ke 7  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  dfan2  154  cbvf  179  leqf  181  axext  219
  Copyright terms: Public domain W3C validator