Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > oveq123 | Unicode version |
Description: Equality theorem for binary operation. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
oveq.1 | |
oveq.2 | |
oveq.3 | |
oveq123.4 | |
oveq123.5 | |
oveq123.6 |
Ref | Expression |
---|---|
oveq123 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq.1 | . . . 4 | |
2 | oveq.2 | . . . 4 | |
3 | 1, 2 | wc 50 | . . 3 |
4 | oveq.3 | . . 3 | |
5 | 3, 4 | wc 50 | . 2 |
6 | oveq123.4 | . . . 4 | |
7 | oveq123.5 | . . . 4 | |
8 | 1, 2, 6, 7 | ceq12 88 | . . 3 |
9 | oveq123.6 | . . 3 | |
10 | 3, 4, 8, 9 | ceq12 88 | . 2 |
11 | weq 41 | . . 3 | |
12 | 1, 2, 4 | wov 72 | . . 3 |
13 | 6 | ax-cb1 29 | . . . 4 |
14 | 1, 2, 4 | df-ov 73 | . . . 4 |
15 | 13, 14 | a1i 28 | . . 3 |
16 | 11, 12, 5, 15 | dfov2 75 | . 2 |
17 | 1, 6 | eqtypi 78 | . . . 4 |
18 | 2, 7 | eqtypi 78 | . . . 4 |
19 | 4, 9 | eqtypi 78 | . . . 4 |
20 | 17, 18, 19 | wov 72 | . . 3 |
21 | 17, 18 | wc 50 | . . . 4 |
22 | 21, 19 | wc 50 | . . 3 |
23 | 17, 18, 19 | df-ov 73 | . . . 4 |
24 | 13, 23 | a1i 28 | . . 3 |
25 | 11, 20, 22, 24 | dfov2 75 | . 2 |
26 | 5, 10, 16, 25 | 3eqtr4i 96 | 1 |
Colors of variables: type var term |
Syntax hints: ht 2 kc 5 ke 7 kbr 9 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: oveq1 99 oveq12 100 oveq 102 |
Copyright terms: Public domain | W3C validator |