| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > oveq123 | Unicode version | ||
| Description: Equality theorem for binary operation. (Contributed by Mario Carneiro, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| oveq.1 |
|
| oveq.2 |
|
| oveq.3 |
|
| oveq123.4 |
|
| oveq123.5 |
|
| oveq123.6 |
|
| Ref | Expression |
|---|---|
| oveq123 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq.1 |
. . . 4
| |
| 2 | oveq.2 |
. . . 4
| |
| 3 | 1, 2 | wc 50 |
. . 3
|
| 4 | oveq.3 |
. . 3
| |
| 5 | 3, 4 | wc 50 |
. 2
|
| 6 | oveq123.4 |
. . . 4
| |
| 7 | oveq123.5 |
. . . 4
| |
| 8 | 1, 2, 6, 7 | ceq12 88 |
. . 3
|
| 9 | oveq123.6 |
. . 3
| |
| 10 | 3, 4, 8, 9 | ceq12 88 |
. 2
|
| 11 | weq 41 |
. . 3
| |
| 12 | 1, 2, 4 | wov 72 |
. . 3
|
| 13 | 6 | ax-cb1 29 |
. . . 4
|
| 14 | 1, 2, 4 | df-ov 73 |
. . . 4
|
| 15 | 13, 14 | a1i 28 |
. . 3
|
| 16 | 11, 12, 5, 15 | dfov2 75 |
. 2
|
| 17 | 1, 6 | eqtypi 78 |
. . . 4
|
| 18 | 2, 7 | eqtypi 78 |
. . . 4
|
| 19 | 4, 9 | eqtypi 78 |
. . . 4
|
| 20 | 17, 18, 19 | wov 72 |
. . 3
|
| 21 | 17, 18 | wc 50 |
. . . 4
|
| 22 | 21, 19 | wc 50 |
. . 3
|
| 23 | 17, 18, 19 | df-ov 73 |
. . . 4
|
| 24 | 13, 23 | a1i 28 |
. . 3
|
| 25 | 11, 20, 22, 24 | dfov2 75 |
. 2
|
| 26 | 5, 10, 16, 25 | 3eqtr4i 96 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: oveq1 99 oveq12 100 oveq 102 |
| Copyright terms: Public domain | W3C validator |