HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  exnal Unicode version

Theorem exnal 201
Description: Theorem 19.14 of [Margaris] p. 90. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypothesis
Ref Expression
exmid.1 |- A:*
Assertion
Ref Expression
exnal |- T. |= [(E.\x:al (~ A)) = (~ (A.\x:al A))]
Distinct variable groups:   x,A   al,x

Proof of Theorem exnal
StepHypRef Expression
1 wnot 138 . . 3 |- ~ :(* -> *)
2 wex 139 . . . . 5 |- E.:((al -> *) -> *)
3 exmid.1 . . . . . . 7 |- A:*
41, 3wc 50 . . . . . 6 |- (~ A):*
54wl 66 . . . . 5 |- \x:al (~ A):(al -> *)
62, 5wc 50 . . . 4 |- (E.\x:al (~ A)):*
71, 6wc 50 . . 3 |- (~ (E.\x:al (~ A))):*
81, 7wc 50 . 2 |- (~ (~ (E.\x:al (~ A)))):*
9 wal 134 . . . . 5 |- A.:((al -> *) -> *)
101, 4wc 50 . . . . . 6 |- (~ (~ A)):*
1110wl 66 . . . . 5 |- \x:al (~ (~ A)):(al -> *)
129, 11wc 50 . . . 4 |- (A.\x:al (~ (~ A))):*
134alnex 186 . . . 4 |- T. |= [(A.\x:al (~ (~ A))) = (~ (E.\x:al (~ A)))]
1412, 13eqcomi 79 . . 3 |- T. |= [(~ (E.\x:al (~ A))) = (A.\x:al (~ (~ A)))]
151, 7, 14ceq2 90 . 2 |- T. |= [(~ (~ (E.\x:al (~ A)))) = (~ (A.\x:al (~ (~ A))))]
166notnot 200 . 2 |- T. |= [(E.\x:al (~ A)) = (~ (~ (E.\x:al (~ A))))]
173wl 66 . . . 4 |- \x:al A:(al -> *)
189, 17wc 50 . . 3 |- (A.\x:al A):*
193notnot 200 . . . . 5 |- T. |= [A = (~ (~ A))]
203, 19leq 91 . . . 4 |- T. |= [\x:al A = \x:al (~ (~ A))]
219, 17, 20ceq2 90 . . 3 |- T. |= [(A.\x:al A) = (A.\x:al (~ (~ A)))]
221, 18, 21ceq2 90 . 2 |- T. |= [(~ (A.\x:al A)) = (~ (A.\x:al (~ (~ A))))]
238, 15, 16, 223eqtr4i 96 1 |- T. |= [(E.\x:al (~ A)) = (~ (A.\x:al A))]
Colors of variables: type var term
Syntax hints:   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12  ~ tne 120  A.tal 122  E.tex 123
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177  ax-wat 192  ax-ac 196
This theorem depends on definitions:  df-ov 73  df-al 126  df-fal 127  df-an 128  df-im 129  df-not 130  df-ex 131  df-or 132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator