| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > exnal | Unicode version | ||
| Description: Theorem 19.14 of [Margaris] p. 90. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| exmid.1 |
|
| Ref | Expression |
|---|---|
| exnal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wnot 138 |
. . 3
| |
| 2 | wex 139 |
. . . . 5
| |
| 3 | exmid.1 |
. . . . . . 7
| |
| 4 | 1, 3 | wc 50 |
. . . . . 6
|
| 5 | 4 | wl 66 |
. . . . 5
|
| 6 | 2, 5 | wc 50 |
. . . 4
|
| 7 | 1, 6 | wc 50 |
. . 3
|
| 8 | 1, 7 | wc 50 |
. 2
|
| 9 | wal 134 |
. . . . 5
| |
| 10 | 1, 4 | wc 50 |
. . . . . 6
|
| 11 | 10 | wl 66 |
. . . . 5
|
| 12 | 9, 11 | wc 50 |
. . . 4
|
| 13 | 4 | alnex 186 |
. . . 4
|
| 14 | 12, 13 | eqcomi 79 |
. . 3
|
| 15 | 1, 7, 14 | ceq2 90 |
. 2
|
| 16 | 6 | notnot 200 |
. 2
|
| 17 | 3 | wl 66 |
. . . 4
|
| 18 | 9, 17 | wc 50 |
. . 3
|
| 19 | 3 | notnot 200 |
. . . . 5
|
| 20 | 3, 19 | leq 91 |
. . . 4
|
| 21 | 9, 17, 20 | ceq2 90 |
. . 3
|
| 22 | 1, 18, 21 | ceq2 90 |
. 2
|
| 23 | 8, 15, 16, 22 | 3eqtr4i 96 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 ax-wat 192 ax-ac 196 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 df-ex 131 df-or 132 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |