HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  leqf Unicode version

Theorem leqf 181
Description: Equality theorem for lambda abstraction, using bound variable instead of distinct variables. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
leqf.1 |- A:be
leqf.2 |- R |= [A = B]
leqf.3 |- T. |= [(\x:al Ry:al) = R]
Assertion
Ref Expression
leqf |- R |= [\x:al A = \x:al B]
Distinct variable groups:   y,A   y,B   y,R   x,y,al

Proof of Theorem leqf
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 leqf.1 . . . . 5 |- A:be
21wl 66 . . . 4 |- \x:al A:(al -> be)
3 wv 64 . . . 4 |- z:al:al
42, 3wc 50 . . 3 |- (\x:al Az:al):be
54wl 66 . 2 |- \z:al (\x:al Az:al):(al -> be)
6 leqf.2 . . . . 5 |- R |= [A = B]
76ax-cb1 29 . . . . . 6 |- R:*
81beta 92 . . . . . 6 |- T. |= [(\x:al Ax:al) = A]
97, 8a1i 28 . . . . 5 |- R |= [(\x:al Ax:al) = A]
101, 6eqtypi 78 . . . . . . 7 |- B:be
1110beta 92 . . . . . 6 |- T. |= [(\x:al Bx:al) = B]
127, 11a1i 28 . . . . 5 |- R |= [(\x:al Bx:al) = B]
131, 6, 9, 123eqtr4i 96 . . . 4 |- R |= [(\x:al Ax:al) = (\x:al Bx:al)]
14 weq 41 . . . . 5 |- = :(be -> (be -> *))
15 wv 64 . . . . 5 |- y:al:al
1610wl 66 . . . . . 6 |- \x:al B:(al -> be)
1716, 3wc 50 . . . . 5 |- (\x:al Bz:al):be
1814, 15ax-17 105 . . . . 5 |- T. |= [(\x:al = y:al) = = ]
191, 15ax-hbl1 103 . . . . . 6 |- T. |= [(\x:al \x:al Ay:al) = \x:al A]
203, 15ax-17 105 . . . . . 6 |- T. |= [(\x:al z:aly:al) = z:al]
212, 3, 15, 19, 20hbc 110 . . . . 5 |- T. |= [(\x:al (\x:al Az:al)y:al) = (\x:al Az:al)]
2210, 15ax-hbl1 103 . . . . . 6 |- T. |= [(\x:al \x:al By:al) = \x:al B]
2316, 3, 15, 22, 20hbc 110 . . . . 5 |- T. |= [(\x:al (\x:al Bz:al)y:al) = (\x:al Bz:al)]
2414, 4, 15, 17, 18, 21, 23hbov 111 . . . 4 |- T. |= [(\x:al [(\x:al Az:al) = (\x:al Bz:al)]y:al) = [(\x:al Az:al) = (\x:al Bz:al)]]
25 leqf.3 . . . 4 |- T. |= [(\x:al Ry:al) = R]
26 wv 64 . . . . . 6 |- x:al:al
272, 26wc 50 . . . . 5 |- (\x:al Ax:al):be
2816, 26wc 50 . . . . 5 |- (\x:al Bx:al):be
2926, 3weqi 76 . . . . . . 7 |- [x:al = z:al]:*
3029id 25 . . . . . 6 |- [x:al = z:al] |= [x:al = z:al]
312, 26, 30ceq2 90 . . . . 5 |- [x:al = z:al] |= [(\x:al Ax:al) = (\x:al Az:al)]
3216, 26, 30ceq2 90 . . . . 5 |- [x:al = z:al] |= [(\x:al Bx:al) = (\x:al Bz:al)]
3314, 27, 28, 31, 32oveq12 100 . . . 4 |- [x:al = z:al] |= [[(\x:al Ax:al) = (\x:al Bx:al)] = [(\x:al Az:al) = (\x:al Bz:al)]]
3429, 7eqid 83 . . . 4 |- [x:al = z:al] |= [R = R]
3513, 24, 25, 33, 34ax-inst 113 . . 3 |- R |= [(\x:al Az:al) = (\x:al Bz:al)]
364, 35leq 91 . 2 |- R |= [\z:al (\x:al Az:al) = \z:al (\x:al Bz:al)]
372eta 178 . . 3 |- T. |= [\z:al (\x:al Az:al) = \x:al A]
387, 37a1i 28 . 2 |- R |= [\z:al (\x:al Az:al) = \x:al A]
3916eta 178 . . 3 |- T. |= [\z:al (\x:al Bz:al) = \x:al B]
407, 39a1i 28 . 2 |- R |= [\z:al (\x:al Bz:al) = \x:al B]
415, 36, 38, 403eqtr3i 97 1 |- R |= [\x:al A = \x:al B]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126
This theorem is referenced by:  alrimi  182  axext  219  axrep  220
  Copyright terms: Public domain W3C validator