HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax14 Unicode version

Theorem ax14 217
Description: Axiom of Equality. Axiom scheme C12' in [Megill] p. 448 (p. 16 of the preprint). It is a special case of Axiom B8 (p. 75) of system S2 of [Tarski] p. 77. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypotheses
Ref Expression
ax14.1 |- A:(al -> *)
ax14.2 |- B:(al -> *)
ax14.3 |- C:al
Assertion
Ref Expression
ax14 |- T. |= [[A = B] ==> [(AC) ==> (BC)]]

Proof of Theorem ax14
StepHypRef Expression
1 wtru 43 . . . . . 6 |- T.:*
2 ax14.1 . . . . . . 7 |- A:(al -> *)
3 ax14.2 . . . . . . 7 |- B:(al -> *)
42, 3weqi 76 . . . . . 6 |- [A = B]:*
51, 4wct 48 . . . . 5 |- (T., [A = B]):*
6 ax14.3 . . . . . 6 |- C:al
72, 6wc 50 . . . . 5 |- (AC):*
85, 7simpr 23 . . . 4 |- ((T., [A = B]), (AC)) |= (AC)
91, 4simpr 23 . . . . . 6 |- (T., [A = B]) |= [A = B]
102, 6, 9ceq1 89 . . . . 5 |- (T., [A = B]) |= [(AC) = (BC)]
1110, 7adantr 55 . . . 4 |- ((T., [A = B]), (AC)) |= [(AC) = (BC)]
128, 11mpbi 82 . . 3 |- ((T., [A = B]), (AC)) |= (BC)
1312ex 158 . 2 |- (T., [A = B]) |= [(AC) ==> (BC)]
1413ex 158 1 |- T. |= [[A = B] ==> [(AC) ==> (BC)]]
Colors of variables: type var term
Syntax hints:   -> ht 2  *hb 3  kc 5   = ke 7  T.kt 8  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-an 128  df-im 129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator