Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax17m | Unicode version |
Description: Axiom to quantify a variable over a formula in which it does not occur. Axiom C5 in [Megill] p. 444 (p. 11 of the preprint). Also appears as Axiom B6 (p. 75) of system S2 of [Tarski] p. 77 and Axiom C5-1 of [Monk2] p. 113. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
ax17m.1 |
Ref | Expression |
---|---|
ax17m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax17m.1 | . 2 | |
2 | wv 64 | . . 3 | |
3 | 1, 2 | ax-17 105 | . 2 |
4 | 1, 3 | isfree 188 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 hb 3 kc 5 kl 6 kt 8 kbr 9 wffMMJ2 11 wffMMJ2t 12 tim 121 tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |