| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax14 | GIF version | ||
| Description: Axiom of Equality. Axiom scheme C12' in [Megill] p. 448 (p. 16 of the preprint). It is a special case of Axiom B8 (p. 75) of system S2 of [Tarski] p. 77. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| ax14.1 | ⊢ A:(α → ∗) |
| ax14.2 | ⊢ B:(α → ∗) |
| ax14.3 | ⊢ C:α |
| Ref | Expression |
|---|---|
| ax14 | ⊢ ⊤⊧[[A = B] ⇒ [(AC) ⇒ (BC)]] |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wtru 43 | . . . . . 6 ⊢ ⊤:∗ | |
| 2 | ax14.1 | . . . . . . 7 ⊢ A:(α → ∗) | |
| 3 | ax14.2 | . . . . . . 7 ⊢ B:(α → ∗) | |
| 4 | 2, 3 | weqi 76 | . . . . . 6 ⊢ [A = B]:∗ |
| 5 | 1, 4 | wct 48 | . . . . 5 ⊢ (⊤, [A = B]):∗ |
| 6 | ax14.3 | . . . . . 6 ⊢ C:α | |
| 7 | 2, 6 | wc 50 | . . . . 5 ⊢ (AC):∗ |
| 8 | 5, 7 | simpr 23 | . . . 4 ⊢ ((⊤, [A = B]), (AC))⊧(AC) |
| 9 | 1, 4 | simpr 23 | . . . . . 6 ⊢ (⊤, [A = B])⊧[A = B] |
| 10 | 2, 6, 9 | ceq1 89 | . . . . 5 ⊢ (⊤, [A = B])⊧[(AC) = (BC)] |
| 11 | 10, 7 | adantr 55 | . . . 4 ⊢ ((⊤, [A = B]), (AC))⊧[(AC) = (BC)] |
| 12 | 8, 11 | mpbi 82 | . . 3 ⊢ ((⊤, [A = B]), (AC))⊧(BC) |
| 13 | 12 | ex 158 | . 2 ⊢ (⊤, [A = B])⊧[(AC) ⇒ (BC)] |
| 14 | 13 | ex 158 | 1 ⊢ ⊤⊧[[A = B] ⇒ [(AC) ⇒ (BC)]] |
| Colors of variables: type var term |
| Syntax hints: → ht 2 ∗hb 3 kc 5 = ke 7 ⊤kt 8 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ⇒ tim 121 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-an 128 df-im 129 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |