Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > simpr | Unicode version |
Description: Extract an assumption from the context. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
ax-simpl.1 | |
ax-simpl.2 |
Ref | Expression |
---|---|
simpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-simpl.1 | . 2 | |
2 | ax-simpl.2 | . 2 | |
3 | 1, 2 | ax-simpr 21 | 1 |
Colors of variables: type var term |
Syntax hints: hb 3 kct 10 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-simpr 21 |
This theorem is referenced by: simprd 38 ancoms 54 ct1 57 sylan 59 an32s 60 anassrs 62 dfan2 154 imp 157 ex 158 notval2 159 notnot1 160 olc 164 orc 165 exlimdv2 166 exlimd 183 exmid 199 notnot 200 ax1 203 ax2 204 ax3 205 ax8 211 ax11 214 ax13 216 ax14 217 |
Copyright terms: Public domain | W3C validator |