| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ceq12 | Unicode version | ||
| Description: Equality theorem for combination. (Contributed by Mario Carneiro, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| ceq12.1 |
|
| ceq12.2 |
|
| ceq12.3 |
|
| ceq12.4 |
|
| Ref | Expression |
|---|---|
| ceq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weq 41 |
. 2
| |
| 2 | ceq12.1 |
. . 3
| |
| 3 | ceq12.2 |
. . 3
| |
| 4 | 2, 3 | wc 50 |
. 2
|
| 5 | ceq12.3 |
. . . 4
| |
| 6 | 2, 5 | eqtypi 78 |
. . 3
|
| 7 | ceq12.4 |
. . . 4
| |
| 8 | 3, 7 | eqtypi 78 |
. . 3
|
| 9 | 6, 8 | wc 50 |
. 2
|
| 10 | weq 41 |
. . . 4
| |
| 11 | 10, 2, 6, 5 | dfov1 74 |
. . 3
|
| 12 | weq 41 |
. . . 4
| |
| 13 | 12, 3, 8, 7 | dfov1 74 |
. . 3
|
| 14 | 2, 6, 3, 8 | ax-ceq 51 |
. . 3
|
| 15 | 11, 13, 14 | syl2anc 19 |
. 2
|
| 16 | 1, 4, 9, 15 | dfov2 75 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: ceq1 89 ceq2 90 oveq123 98 hbc 110 ac 197 |
| Copyright terms: Public domain | W3C validator |