| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ac | Unicode version | ||
| Description: Defining property of the indefinite descriptor: it selects an element from any type. This is equivalent to global choice in ZF. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| ac.1 |
|
| ac.2 |
|
| Ref | Expression |
|---|---|
| ac |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac.1 |
. . 3
| |
| 2 | wat 193 |
. . . 4
| |
| 3 | 2, 1 | wc 50 |
. . 3
|
| 4 | 1, 3 | wc 50 |
. 2
|
| 5 | ac.2 |
. . . 4
| |
| 6 | 1, 5 | wc 50 |
. . 3
|
| 7 | 6 | id 25 |
. 2
|
| 8 | 7 | ax-cb1 29 |
. . 3
|
| 9 | ax-ac 196 |
. . . . 5
| |
| 10 | wal 134 |
. . . . . . 7
| |
| 11 | wim 137 |
. . . . . . . . 9
| |
| 12 | wv 64 |
. . . . . . . . . 10
| |
| 13 | wv 64 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | wc 50 |
. . . . . . . . 9
|
| 15 | 2, 12 | wc 50 |
. . . . . . . . . 10
|
| 16 | 12, 15 | wc 50 |
. . . . . . . . 9
|
| 17 | 11, 14, 16 | wov 72 |
. . . . . . . 8
|
| 18 | 17 | wl 66 |
. . . . . . 7
|
| 19 | 10, 18 | wc 50 |
. . . . . 6
|
| 20 | 12, 1 | weqi 76 |
. . . . . . . . . . 11
|
| 21 | 20 | id 25 |
. . . . . . . . . 10
|
| 22 | 12, 13, 21 | ceq1 89 |
. . . . . . . . 9
|
| 23 | 2, 12, 21 | ceq2 90 |
. . . . . . . . . 10
|
| 24 | 12, 15, 21, 23 | ceq12 88 |
. . . . . . . . 9
|
| 25 | 11, 14, 16, 22, 24 | oveq12 100 |
. . . . . . . 8
|
| 26 | 17, 25 | leq 91 |
. . . . . . 7
|
| 27 | 10, 18, 26 | ceq2 90 |
. . . . . 6
|
| 28 | 19, 1, 27 | cla4v 152 |
. . . . 5
|
| 29 | 9, 28 | syl 16 |
. . . 4
|
| 30 | 17, 25 | eqtypi 78 |
. . . . 5
|
| 31 | 1, 13 | wc 50 |
. . . . . 6
|
| 32 | 13, 5 | weqi 76 |
. . . . . . . 8
|
| 33 | 32 | id 25 |
. . . . . . 7
|
| 34 | 1, 13, 33 | ceq2 90 |
. . . . . 6
|
| 35 | 11, 31, 4, 34 | oveq1 99 |
. . . . 5
|
| 36 | 30, 5, 35 | cla4v 152 |
. . . 4
|
| 37 | 29, 36 | syl 16 |
. . 3
|
| 38 | 8, 37 | a1i 28 |
. 2
|
| 39 | 4, 7, 38 | mpd 156 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-wat 192 ax-ac 196 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 |
| This theorem is referenced by: dfex2 198 exmid 199 |
| Copyright terms: Public domain | W3C validator |