Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ac | Unicode version |
Description: Defining property of the indefinite descriptor: it selects an element from any type. This is equivalent to global choice in ZF. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
ac.1 | |
ac.2 |
Ref | Expression |
---|---|
ac |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac.1 | . . 3 | |
2 | wat 193 | . . . 4 | |
3 | 2, 1 | wc 50 | . . 3 |
4 | 1, 3 | wc 50 | . 2 |
5 | ac.2 | . . . 4 | |
6 | 1, 5 | wc 50 | . . 3 |
7 | 6 | id 25 | . 2 |
8 | 7 | ax-cb1 29 | . . 3 |
9 | ax-ac 196 | . . . . 5 | |
10 | wal 134 | . . . . . . 7 | |
11 | wim 137 | . . . . . . . . 9 | |
12 | wv 64 | . . . . . . . . . 10 | |
13 | wv 64 | . . . . . . . . . 10 | |
14 | 12, 13 | wc 50 | . . . . . . . . 9 |
15 | 2, 12 | wc 50 | . . . . . . . . . 10 |
16 | 12, 15 | wc 50 | . . . . . . . . 9 |
17 | 11, 14, 16 | wov 72 | . . . . . . . 8 |
18 | 17 | wl 66 | . . . . . . 7 |
19 | 10, 18 | wc 50 | . . . . . 6 |
20 | 12, 1 | weqi 76 | . . . . . . . . . . 11 |
21 | 20 | id 25 | . . . . . . . . . 10 |
22 | 12, 13, 21 | ceq1 89 | . . . . . . . . 9 |
23 | 2, 12, 21 | ceq2 90 | . . . . . . . . . 10 |
24 | 12, 15, 21, 23 | ceq12 88 | . . . . . . . . 9 |
25 | 11, 14, 16, 22, 24 | oveq12 100 | . . . . . . . 8 |
26 | 17, 25 | leq 91 | . . . . . . 7 |
27 | 10, 18, 26 | ceq2 90 | . . . . . 6 |
28 | 19, 1, 27 | cla4v 152 | . . . . 5 |
29 | 9, 28 | syl 16 | . . . 4 |
30 | 17, 25 | eqtypi 78 | . . . . 5 |
31 | 1, 13 | wc 50 | . . . . . 6 |
32 | 13, 5 | weqi 76 | . . . . . . . 8 |
33 | 32 | id 25 | . . . . . . 7 |
34 | 1, 13, 33 | ceq2 90 | . . . . . 6 |
35 | 11, 31, 4, 34 | oveq1 99 | . . . . 5 |
36 | 30, 5, 35 | cla4v 152 | . . . 4 |
37 | 29, 36 | syl 16 | . . 3 |
38 | 8, 37 | a1i 28 | . 2 |
39 | 4, 7, 38 | mpd 156 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2 11 wffMMJ2t 12 tim 121 tal 122 tat 191 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-wat 192 ax-ac 196 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 |
This theorem is referenced by: dfex2 198 exmid 199 |
Copyright terms: Public domain | W3C validator |