![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > mpbir | Unicode version |
Description: Deduction from equality inference. |
Ref | Expression |
---|---|
mpbir.1 |
![]() ![]() ![]() ![]() |
mpbir.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | ax-cb2 30 |
. . . 4
![]() ![]() ![]() ![]() |
3 | mpbir.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtypri 71 |
. . 3
![]() ![]() ![]() ![]() |
5 | 4, 3 | eqcomi 70 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | mpbi 72 |
1
![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
This theorem depends on definitions: df-ov 65 |
This theorem is referenced by: ax4g 139 alrimiv 141 dfan2 144 mpd 146 ex 148 notnot1 150 con2d 151 olc 154 orc 155 ax4e 158 cla4ev 159 19.8a 160 alrimi 170 alnex 174 exmid 186 ax9 199 ax10 200 ax11 201 axrep 207 |
Copyright terms: Public domain | W3C validator |