HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  dedi Unicode version

Theorem dedi 85
Description: Deduction theorem for equality. (Contributed by Mario Carneiro, 7-Oct-2014.)
Hypotheses
Ref Expression
dedi.1 |- S |= T
dedi.2 |- T |= S
Assertion
Ref Expression
dedi |- T. |= [S = T]

Proof of Theorem dedi
StepHypRef Expression
1 dedi.1 . . 3 |- S |= T
2 wtru 43 . . 3 |- T.:*
31, 2adantl 56 . 2 |- (T., S) |= T
4 dedi.2 . . 3 |- T |= S
54, 2adantl 56 . 2 |- (T., T) |= S
63, 5ded 84 1 |- T. |= [S = T]
Colors of variables: type var term
Syntax hints:   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wc 49  ax-ceq 51  ax-wov 71
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  dfan2  154  notval2  159  alnex  186  notnot  200
  Copyright terms: Public domain W3C validator