Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > adantl | Unicode version |
Description: Extract an assumption from the context. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
adantr.1 | |
adantr.2 |
Ref | Expression |
---|---|
adantl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantr.1 | . . 3 | |
2 | adantr.2 | . . 3 | |
3 | 1, 2 | adantr 55 | . 2 |
4 | 3 | ancoms 54 | 1 |
Colors of variables: type var term |
Syntax hints: hb 3 kct 10 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-cb1 29 ax-wctl 31 ax-wctr 32 |
This theorem is referenced by: ct2 58 dedi 85 hbxfrf 107 notval2 159 ax4e 168 exlimd 183 alimdv 184 alnex 186 exnal1 187 isfree 188 dfex2 198 exmid 199 ax2 204 ax3 205 ax5 207 ax7 209 ax8 211 ax10 213 ax11 214 axext 219 axrep 220 |
Copyright terms: Public domain | W3C validator |