![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > adantl | Unicode version |
Description: Extract an assumption from the context. |
Ref | Expression |
---|---|
adantr.1 |
![]() ![]() ![]() ![]() |
adantr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
adantl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | adantr.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | adantr 50 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ancoms 49 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-cb1 29 |
This theorem is referenced by: ct2 53 dedi 75 hbxfrf 97 notval2 149 ax4e 158 exlimd 171 alimdv 172 alnex 174 exnal1 175 isfree 176 dfex2 185 exmid 186 ax2 191 ax3 192 ax5 194 ax7 196 ax8 198 ax10 200 ax11 201 axext 206 axrep 207 |
Copyright terms: Public domain | W3C validator |