HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  notnot Unicode version

Theorem notnot 200
Description: Rule of double negation. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypothesis
Ref Expression
exmid.1 |- A:*
Assertion
Ref Expression
notnot |- T. |= [A = (~ (~ A))]

Proof of Theorem notnot
StepHypRef Expression
1 exmid.1 . . 3 |- A:*
21notnot1 160 . 2 |- A |= (~ (~ A))
3 wnot 138 . . . 4 |- ~ :(* -> *)
43, 1wc 50 . . 3 |- (~ A):*
52ax-cb2 30 . . . 4 |- (~ (~ A)):*
61exmid 199 . . . 4 |- T. |= [A \/ (~ A)]
75, 6a1i 28 . . 3 |- (~ (~ A)) |= [A \/ (~ A)]
85, 1simpr 23 . . 3 |- ((~ (~ A)), A) |= A
9 wfal 135 . . . . 5 |- F.:*
105id 25 . . . . . 6 |- (~ (~ A)) |= (~ (~ A))
114notval 145 . . . . . . 7 |- T. |= [(~ (~ A)) = [(~ A) ==> F.]]
125, 11a1i 28 . . . . . 6 |- (~ (~ A)) |= [(~ (~ A)) = [(~ A) ==> F.]]
1310, 12mpbi 82 . . . . 5 |- (~ (~ A)) |= [(~ A) ==> F.]
144, 9, 13imp 157 . . . 4 |- ((~ (~ A)), (~ A)) |= F.
151pm2.21 153 . . . 4 |- F. |= A
1614, 15syl 16 . . 3 |- ((~ (~ A)), (~ A)) |= A
171, 4, 1, 7, 8, 16ecase 163 . 2 |- (~ (~ A)) |= A
182, 17dedi 85 1 |- T. |= [A = (~ (~ A))]
Colors of variables: type var term
Syntax hints:  *hb 3  kc 5   = ke 7  T.kt 8  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12  F.tfal 118  ~ tne 120   ==> tim 121   \/ tor 124
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-wat 192  ax-ac 196
This theorem depends on definitions:  df-ov 73  df-al 126  df-fal 127  df-an 128  df-im 129  df-not 130  df-or 132
This theorem is referenced by:  exnal  201
  Copyright terms: Public domain W3C validator