HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  notval2 Unicode version

Theorem notval2 159
Description: Another way two write ~ A, the negation of A. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypothesis
Ref Expression
notval2.1 |- A:*
Assertion
Ref Expression
notval2 |- T. |= [(~ A) = [A = F.]]

Proof of Theorem notval2
StepHypRef Expression
1 wnot 138 . . 3 |- ~ :(* -> *)
2 notval2.1 . . 3 |- A:*
31, 2wc 50 . 2 |- (~ A):*
42notval 145 . 2 |- T. |= [(~ A) = [A ==> F.]]
5 wfal 135 . . . . 5 |- F.:*
6 wim 137 . . . . . . 7 |- ==> :(* -> (* -> *))
76, 2, 5wov 72 . . . . . 6 |- [A ==> F.]:*
87, 2simpr 23 . . . . 5 |- ([A ==> F.], A) |= A
97, 2simpl 22 . . . . 5 |- ([A ==> F.], A) |= [A ==> F.]
105, 8, 9mpd 156 . . . 4 |- ([A ==> F.], A) |= F.
112pm2.21 153 . . . . 5 |- F. |= A
1211, 7adantl 56 . . . 4 |- ([A ==> F.], F.) |= A
1310, 12ded 84 . . 3 |- [A ==> F.] |= [A = F.]
1413ax-cb2 30 . . . . . 6 |- [A = F.]:*
1514, 2simpr 23 . . . . 5 |- ([A = F.], A) |= A
1614, 2simpl 22 . . . . 5 |- ([A = F.], A) |= [A = F.]
1715, 16mpbi 82 . . . 4 |- ([A = F.], A) |= F.
1817ex 158 . . 3 |- [A = F.] |= [A ==> F.]
1913, 18dedi 85 . 2 |- T. |= [[A ==> F.] = [A = F.]]
203, 4, 19eqtri 95 1 |- T. |= [(~ A) = [A = F.]]
Colors of variables: type var term
Syntax hints:  *hb 3  kc 5   = ke 7  T.kt 8  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12  F.tfal 118  ~ tne 120   ==> tim 121
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-fal 127  df-an 128  df-im 129  df-not 130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator