Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > alnex | Unicode version |
Description: Theorem 19.7 of [Margaris] p. 89. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
alnex1.1 |
Ref | Expression |
---|---|
alnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex1.1 | . . . . . 6 | |
2 | wfal 135 | . . . . . 6 | |
3 | wnot 138 | . . . . . . . . 9 | |
4 | 3, 1 | wc 50 | . . . . . . . 8 |
5 | 4 | ax4 150 | . . . . . . 7 |
6 | 5 | ax-cb1 29 | . . . . . . . 8 |
7 | 1 | notval 145 | . . . . . . . 8 |
8 | 6, 7 | a1i 28 | . . . . . . 7 |
9 | 5, 8 | mpbi 82 | . . . . . 6 |
10 | 1, 2, 9 | imp 157 | . . . . 5 |
11 | wal 134 | . . . . . 6 | |
12 | 4 | wl 66 | . . . . . 6 |
13 | wv 64 | . . . . . 6 | |
14 | 11, 13 | ax-17 105 | . . . . . 6 |
15 | 4, 13 | ax-hbl1 103 | . . . . . 6 |
16 | 11, 12, 13, 14, 15 | hbc 110 | . . . . 5 |
17 | 2, 13 | ax-17 105 | . . . . 5 |
18 | 10, 16, 17 | exlimd 183 | . . . 4 |
19 | 18 | ex 158 | . . 3 |
20 | wex 139 | . . . . . 6 | |
21 | 1 | wl 66 | . . . . . 6 |
22 | 20, 21 | wc 50 | . . . . 5 |
23 | 22 | notval 145 | . . . 4 |
24 | 6, 23 | a1i 28 | . . 3 |
25 | 19, 24 | mpbir 87 | . 2 |
26 | 1 | 19.8a 170 | . . . . . 6 |
27 | wtru 43 | . . . . . 6 | |
28 | 26, 27 | adantl 56 | . . . . 5 |
29 | 28 | con3d 162 | . . . 4 |
30 | 29 | trul 39 | . . 3 |
31 | 3, 13 | ax-17 105 | . . . 4 |
32 | 20, 13 | ax-17 105 | . . . . 5 |
33 | 1, 13 | ax-hbl1 103 | . . . . 5 |
34 | 20, 21, 13, 32, 33 | hbc 110 | . . . 4 |
35 | 3, 22, 13, 31, 34 | hbc 110 | . . 3 |
36 | 30, 35 | alrimi 182 | . 2 |
37 | 25, 36 | dedi 85 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2 11 wffMMJ2t 12 tfal 118 tne 120 tim 121 tal 122 tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 df-ex 131 |
This theorem is referenced by: exnal1 187 exnal 201 ax9 212 |
Copyright terms: Public domain | W3C validator |