| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > alnex | Unicode version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| alnex1.1 |
|
| Ref | Expression |
|---|---|
| alnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex1.1 |
. . . . . 6
| |
| 2 | wfal 135 |
. . . . . 6
| |
| 3 | wnot 138 |
. . . . . . . . 9
| |
| 4 | 3, 1 | wc 50 |
. . . . . . . 8
|
| 5 | 4 | ax4 150 |
. . . . . . 7
|
| 6 | 5 | ax-cb1 29 |
. . . . . . . 8
|
| 7 | 1 | notval 145 |
. . . . . . . 8
|
| 8 | 6, 7 | a1i 28 |
. . . . . . 7
|
| 9 | 5, 8 | mpbi 82 |
. . . . . 6
|
| 10 | 1, 2, 9 | imp 157 |
. . . . 5
|
| 11 | wal 134 |
. . . . . 6
| |
| 12 | 4 | wl 66 |
. . . . . 6
|
| 13 | wv 64 |
. . . . . 6
| |
| 14 | 11, 13 | ax-17 105 |
. . . . . 6
|
| 15 | 4, 13 | ax-hbl1 103 |
. . . . . 6
|
| 16 | 11, 12, 13, 14, 15 | hbc 110 |
. . . . 5
|
| 17 | 2, 13 | ax-17 105 |
. . . . 5
|
| 18 | 10, 16, 17 | exlimd 183 |
. . . 4
|
| 19 | 18 | ex 158 |
. . 3
|
| 20 | wex 139 |
. . . . . 6
| |
| 21 | 1 | wl 66 |
. . . . . 6
|
| 22 | 20, 21 | wc 50 |
. . . . 5
|
| 23 | 22 | notval 145 |
. . . 4
|
| 24 | 6, 23 | a1i 28 |
. . 3
|
| 25 | 19, 24 | mpbir 87 |
. 2
|
| 26 | 1 | 19.8a 170 |
. . . . . 6
|
| 27 | wtru 43 |
. . . . . 6
| |
| 28 | 26, 27 | adantl 56 |
. . . . 5
|
| 29 | 28 | con3d 162 |
. . . 4
|
| 30 | 29 | trul 39 |
. . 3
|
| 31 | 3, 13 | ax-17 105 |
. . . 4
|
| 32 | 20, 13 | ax-17 105 |
. . . . 5
|
| 33 | 1, 13 | ax-hbl1 103 |
. . . . 5
|
| 34 | 20, 21, 13, 32, 33 | hbc 110 |
. . . 4
|
| 35 | 3, 22, 13, 31, 34 | hbc 110 |
. . 3
|
| 36 | 30, 35 | alrimi 182 |
. 2
|
| 37 | 25, 36 | dedi 85 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 df-ex 131 |
| This theorem is referenced by: exnal1 187 exnal 201 ax9 212 |
| Copyright terms: Public domain | W3C validator |