| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > eqtru | Unicode version | ||
| Description: If a statement is provable, then it is equivalent to truth. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| eqtru.1 |
|
| Ref | Expression |
|---|---|
| eqtru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtru.1 |
. . 3
| |
| 2 | wtru 43 |
. . 3
| |
| 3 | 1, 2 | adantr 55 |
. 2
|
| 4 | 1 | ax-cb1 29 |
. . . 4
|
| 5 | 1 | ax-cb2 30 |
. . . 4
|
| 6 | 4, 5 | wct 48 |
. . 3
|
| 7 | tru 44 |
. . 3
| |
| 8 | 6, 7 | a1i 28 |
. 2
|
| 9 | 3, 8 | ded 84 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wov 71 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: hbth 109 alrimiv 151 dfan2 154 olc 164 orc 165 alrimi 182 exmid 199 ax9 212 |
| Copyright terms: Public domain | W3C validator |