HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  eta Unicode version

Theorem eta 178
Description: The eta-axiom: a function is determined by its values. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypothesis
Ref Expression
eta.1 |- F:(al -> be)
Assertion
Ref Expression
eta |- T. |= [\x:al (Fx:al) = F]
Distinct variable groups:   x,F   al,x   be,x

Proof of Theorem eta
Dummy variable f is distinct from all other variables.
StepHypRef Expression
1 ax-eta 177 . 2 |- T. |= (A.\f:(al -> be) [\x:al (f:(al -> be)x:al) = f:(al -> be)])
2 weq 41 . . . 4 |- = :((al -> be) -> ((al -> be) -> *))
3 wv 64 . . . . . 6 |- f:(al -> be):(al -> be)
4 wv 64 . . . . . 6 |- x:al:al
53, 4wc 50 . . . . 5 |- (f:(al -> be)x:al):be
65wl 66 . . . 4 |- \x:al (f:(al -> be)x:al):(al -> be)
72, 6, 3wov 72 . . 3 |- [\x:al (f:(al -> be)x:al) = f:(al -> be)]:*
8 eta.1 . . 3 |- F:(al -> be)
93, 8weqi 76 . . . . . . 7 |- [f:(al -> be) = F]:*
109id 25 . . . . . 6 |- [f:(al -> be) = F] |= [f:(al -> be) = F]
113, 4, 10ceq1 89 . . . . 5 |- [f:(al -> be) = F] |= [(f:(al -> be)x:al) = (Fx:al)]
125, 11leq 91 . . . 4 |- [f:(al -> be) = F] |= [\x:al (f:(al -> be)x:al) = \x:al (Fx:al)]
132, 6, 3, 12, 10oveq12 100 . . 3 |- [f:(al -> be) = F] |= [[\x:al (f:(al -> be)x:al) = f:(al -> be)] = [\x:al (Fx:al) = F]]
147, 8, 13cla4v 152 . 2 |- (A.\f:(al -> be) [\x:al (f:(al -> be)x:al) = f:(al -> be)]) |= [\x:al (Fx:al) = F]
151, 14syl 16 1 |- T. |= [\x:al (Fx:al) = F]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12  A.tal 122
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126
This theorem is referenced by:  cbvf  179  leqf  181  ax11  214  axext  219
  Copyright terms: Public domain W3C validator