| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > axext | Unicode version | ||
| Description: Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It states that two sets are identical if they contain the same elements. Axiom Ext of [BellMachover] p. 461. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| axext.1 |
|
| axext.2 |
|
| Ref | Expression |
|---|---|
| axext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axext.1 |
. . . . . 6
| |
| 2 | wv 64 |
. . . . . 6
| |
| 3 | 1, 2 | wc 50 |
. . . . 5
|
| 4 | 3 | wl 66 |
. . . 4
|
| 5 | axext.2 |
. . . . . . . 8
| |
| 6 | 5, 2 | wc 50 |
. . . . . . 7
|
| 7 | 3, 6 | weqi 76 |
. . . . . 6
|
| 8 | 7 | ax4 150 |
. . . . 5
|
| 9 | wal 134 |
. . . . . 6
| |
| 10 | 7 | wl 66 |
. . . . . 6
|
| 11 | wv 64 |
. . . . . 6
| |
| 12 | 9, 11 | ax-17 105 |
. . . . . 6
|
| 13 | 7, 11 | ax-hbl1 103 |
. . . . . 6
|
| 14 | 9, 10, 11, 12, 13 | hbc 110 |
. . . . 5
|
| 15 | 3, 8, 14 | leqf 181 |
. . . 4
|
| 16 | 15 | ax-cb1 29 |
. . . . 5
|
| 17 | 1 | eta 178 |
. . . . 5
|
| 18 | 16, 17 | a1i 28 |
. . . 4
|
| 19 | 5 | eta 178 |
. . . . 5
|
| 20 | 16, 19 | a1i 28 |
. . . 4
|
| 21 | 4, 15, 18, 20 | 3eqtr3i 97 |
. . 3
|
| 22 | wtru 43 |
. . 3
| |
| 23 | 21, 22 | adantl 56 |
. 2
|
| 24 | 23 | ex 158 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |