HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  axext Unicode version

Theorem axext 219
Description: Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It states that two sets are identical if they contain the same elements. Axiom Ext of [BellMachover] p. 461. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypotheses
Ref Expression
axext.1 |- A:(al -> *)
axext.2 |- B:(al -> *)
Assertion
Ref Expression
axext |- T. |= [(A.\x:al [(Ax:al) = (Bx:al)]) ==> [A = B]]
Distinct variable groups:   x,A   x,B   al,x

Proof of Theorem axext
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 axext.1 . . . . . 6 |- A:(al -> *)
2 wv 64 . . . . . 6 |- x:al:al
31, 2wc 50 . . . . 5 |- (Ax:al):*
43wl 66 . . . 4 |- \x:al (Ax:al):(al -> *)
5 axext.2 . . . . . . . 8 |- B:(al -> *)
65, 2wc 50 . . . . . . 7 |- (Bx:al):*
73, 6weqi 76 . . . . . 6 |- [(Ax:al) = (Bx:al)]:*
87ax4 150 . . . . 5 |- (A.\x:al [(Ax:al) = (Bx:al)]) |= [(Ax:al) = (Bx:al)]
9 wal 134 . . . . . 6 |- A.:((al -> *) -> *)
107wl 66 . . . . . 6 |- \x:al [(Ax:al) = (Bx:al)]:(al -> *)
11 wv 64 . . . . . 6 |- y:al:al
129, 11ax-17 105 . . . . . 6 |- T. |= [(\x:al A.y:al) = A.]
137, 11ax-hbl1 103 . . . . . 6 |- T. |= [(\x:al \x:al [(Ax:al) = (Bx:al)]y:al) = \x:al [(Ax:al) = (Bx:al)]]
149, 10, 11, 12, 13hbc 110 . . . . 5 |- T. |= [(\x:al (A.\x:al [(Ax:al) = (Bx:al)])y:al) = (A.\x:al [(Ax:al) = (Bx:al)])]
153, 8, 14leqf 181 . . . 4 |- (A.\x:al [(Ax:al) = (Bx:al)]) |= [\x:al (Ax:al) = \x:al (Bx:al)]
1615ax-cb1 29 . . . . 5 |- (A.\x:al [(Ax:al) = (Bx:al)]):*
171eta 178 . . . . 5 |- T. |= [\x:al (Ax:al) = A]
1816, 17a1i 28 . . . 4 |- (A.\x:al [(Ax:al) = (Bx:al)]) |= [\x:al (Ax:al) = A]
195eta 178 . . . . 5 |- T. |= [\x:al (Bx:al) = B]
2016, 19a1i 28 . . . 4 |- (A.\x:al [(Ax:al) = (Bx:al)]) |= [\x:al (Bx:al) = B]
214, 15, 18, 203eqtr3i 97 . . 3 |- (A.\x:al [(Ax:al) = (Bx:al)]) |= [A = B]
22 wtru 43 . . 3 |- T.:*
2321, 22adantl 56 . 2 |- (T., (A.\x:al [(Ax:al) = (Bx:al)])) |= [A = B]
2423ex 158 1 |- T. |= [(A.\x:al [(Ax:al) = (Bx:al)]) ==> [A = B]]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121  A.tal 122
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator