HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  hbth Unicode version

Theorem hbth 109
Description: Hypothesis builder for a theorem. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
hbth.1 |- B:al
hbth.2 |- R |= A
Assertion
Ref Expression
hbth |- R |= [(\x:al AB) = A]
Distinct variable group:   x,R

Proof of Theorem hbth
StepHypRef Expression
1 hbth.2 . . 3 |- R |= A
21ax-cb2 30 . 2 |- A:*
3 hbth.1 . 2 |- B:al
4 wtru 43 . . 3 |- T.:*
51eqtru 86 . . 3 |- R |= [T. = A]
64, 5eqcomi 79 . 2 |- R |= [A = T.]
71ax-cb1 29 . . 3 |- R:*
84, 3, 7a17i 106 . 2 |- R |= [(\x:al T.B) = T.]
92, 3, 6, 8hbxfr 108 1 |- R |= [(\x:al AB) = A]
Colors of variables: type var term
Syntax hints:  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wl 65  ax-leq 69  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-17 105
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  ax4g  149
  Copyright terms: Public domain W3C validator