![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > hbth | Unicode version |
Description: Hypothesis builder for a theorem. |
Ref | Expression |
---|---|
hbth.1 |
![]() ![]() ![]() ![]() |
hbth.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
hbth |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbth.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | ax-cb2 30 |
. 2
![]() ![]() ![]() ![]() |
3 | hbth.1 |
. 2
![]() ![]() ![]() ![]() | |
4 | wtru 40 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 1 | eqtru 76 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | eqcomi 70 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1 | ax-cb1 29 |
. . 3
![]() ![]() ![]() ![]() |
8 | 4, 3, 7 | a17i 96 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 3, 6, 8 | hbxfr 98 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-leq 62 ax-17 95 |
This theorem depends on definitions: df-ov 65 |
This theorem is referenced by: ax4g 139 |
Copyright terms: Public domain | W3C validator |