| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > hbxfr | Unicode version | ||
| Description: Transfer a hypothesis builder to an equivalent expression. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| hbxfr.1 |
|
| hbxfr.2 |
|
| hbxfr.3 |
|
| hbxfr.4 |
|
| Ref | Expression |
|---|---|
| hbxfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfr.3 |
. . . 4
| |
| 2 | 1 | ax-cb1 29 |
. . 3
|
| 3 | 2 | id 25 |
. 2
|
| 4 | hbxfr.1 |
. . 3
| |
| 5 | hbxfr.2 |
. . 3
| |
| 6 | hbxfr.4 |
. . . 4
| |
| 7 | 6, 2 | adantr 55 |
. . 3
|
| 8 | 4, 5, 1, 7 | hbxfrf 107 |
. 2
|
| 9 | 3, 3, 8 | syl2anc 19 |
1
|
| Colors of variables: type var term |
| Syntax hints: kc 5
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: hbth 109 |
| Copyright terms: Public domain | W3C validator |