HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax4g Unicode version

Theorem ax4g 149
Description: If F is true for all x:al, then it is true for A. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypotheses
Ref Expression
ax4g.1 |- F:(al -> *)
ax4g.2 |- A:al
Assertion
Ref Expression
ax4g |- (A.F) |= (FA)

Proof of Theorem ax4g
Dummy variable p is distinct from all other variables.
StepHypRef Expression
1 wal 134 . . . 4 |- A.:((al -> *) -> *)
2 ax4g.1 . . . 4 |- F:(al -> *)
31, 2wc 50 . . 3 |- (A.F):*
43trud 27 . 2 |- (A.F) |= T.
5 ax4g.2 . . . 4 |- A:al
62, 5wc 50 . . 3 |- (FA):*
74ax-cb1 29 . . . . . 6 |- (A.F):*
87id 25 . . . . 5 |- (A.F) |= (A.F)
92alval 142 . . . . . 6 |- T. |= [(A.F) = [F = \p:al T.]]
107, 9a1i 28 . . . . 5 |- (A.F) |= [(A.F) = [F = \p:al T.]]
118, 10mpbi 82 . . . 4 |- (A.F) |= [F = \p:al T.]
122, 5, 11ceq1 89 . . 3 |- (A.F) |= [(FA) = (\p:al T.A)]
135, 4hbth 109 . . 3 |- (A.F) |= [(\p:al T.A) = T.]
146, 12, 13eqtri 95 . 2 |- (A.F) |= [(FA) = T.]
154, 14mpbir 87 1 |- (A.F) |= (FA)
Colors of variables: type var term
Syntax hints:   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12  A.tal 122
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126
This theorem is referenced by:  ax4  150  cla4v  152
  Copyright terms: Public domain W3C validator