Step | Hyp | Ref
| Expression |
1 | | weu 141 |
. . 3
⊢ ∃!:((α
→ ∗) → ∗) |
2 | | alval.1 |
. . 3
⊢ F:(α
→ ∗) |
3 | 1, 2 | wc 50 |
. 2
⊢ (∃!F):∗ |
4 | | df-eu 133 |
. . 3
⊢
⊤⊧[∃! =
λp:(α → ∗) (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]))] |
5 | 1, 2, 4 | ceq1 89 |
. 2
⊢
⊤⊧[(∃!F) = (λp:(α
→ ∗) (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]))F)] |
6 | | wex 139 |
. . . 4
⊢ ∃:((α
→ ∗) → ∗) |
7 | | wal 134 |
. . . . . 6
⊢ ∀:((α
→ ∗) → ∗) |
8 | | wv 64 |
. . . . . . . . 9
⊢ p:(α
→ ∗):(α →
∗) |
9 | | wv 64 |
. . . . . . . . 9
⊢ x:α:α |
10 | 8, 9 | wc 50 |
. . . . . . . 8
⊢ (p:(α
→ ∗)x:α):∗ |
11 | | wv 64 |
. . . . . . . . 9
⊢ y:α:α |
12 | 9, 11 | weqi 76 |
. . . . . . . 8
⊢ [x:α =
y:α]:∗ |
13 | 10, 12 | weqi 76 |
. . . . . . 7
⊢ [(p:(α
→ ∗)x:α) = [x:α =
y:α]]:∗ |
14 | 13 | wl 66 |
. . . . . 6
⊢
λx:α [(p:(α
→ ∗)x:α) = [x:α =
y:α]]:(α → ∗) |
15 | 7, 14 | wc 50 |
. . . . 5
⊢ (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]):∗ |
16 | 15 | wl 66 |
. . . 4
⊢
λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]):(α → ∗) |
17 | 6, 16 | wc 50 |
. . 3
⊢ (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]])):∗ |
18 | | weq 41 |
. . . . . . . 8
⊢ = :(∗
→ (∗ → ∗)) |
19 | 8, 2 | weqi 76 |
. . . . . . . . . 10
⊢ [p:(α
→ ∗) = F]:∗ |
20 | 19 | id 25 |
. . . . . . . . 9
⊢ [p:(α
→ ∗) = F]⊧[p:(α
→ ∗) = F] |
21 | 8, 9, 20 | ceq1 89 |
. . . . . . . 8
⊢ [p:(α
→ ∗) = F]⊧[(p:(α
→ ∗)x:α) = (Fx:α)] |
22 | 18, 10, 12, 21 | oveq1 99 |
. . . . . . 7
⊢ [p:(α
→ ∗) = F]⊧[[(p:(α
→ ∗)x:α) = [x:α =
y:α]] = [(Fx:α) = [x:α =
y:α]]] |
23 | 13, 22 | leq 91 |
. . . . . 6
⊢ [p:(α
→ ∗) = F]⊧[λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]] =
λx:α [(Fx:α) = [x:α =
y:α]]] |
24 | 7, 14, 23 | ceq2 90 |
. . . . 5
⊢ [p:(α
→ ∗) = F]⊧[(∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]) =
(∀λx:α
[(Fx:α) =
[x:α = y:α]])] |
25 | 15, 24 | leq 91 |
. . . 4
⊢ [p:(α
→ ∗) = F]⊧[λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]) =
λy:α (∀λx:α
[(Fx:α) =
[x:α = y:α]])] |
26 | 6, 16, 25 | ceq2 90 |
. . 3
⊢ [p:(α
→ ∗) = F]⊧[(∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]])) =
(∃λy:α (∀λx:α
[(Fx:α) =
[x:α = y:α]]))] |
27 | 17, 2, 26 | cl 116 |
. 2
⊢
⊤⊧[(λp:(α
→ ∗) (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]))F)
= (∃λy:α (∀λx:α
[(Fx:α) =
[x:α = y:α]]))] |
28 | 3, 5, 27 | eqtri 95 |
1
⊢
⊤⊧[(∃!F) = (∃λy:α (∀λx:α
[(Fx:α) =
[x:α = y:α]]))] |