Step | Hyp | Ref
| Expression |
1 | | wex 139 |
. . . 4
⊢ ∃:((α
→ ∗) → ∗) |
2 | | wal 134 |
. . . . . 6
⊢ ∀:((α
→ ∗) → ∗) |
3 | | wv 64 |
. . . . . . . . 9
⊢ p:(α
→ ∗):(α →
∗) |
4 | | wv 64 |
. . . . . . . . 9
⊢ x:α:α |
5 | 3, 4 | wc 50 |
. . . . . . . 8
⊢ (p:(α
→ ∗)x:α):∗ |
6 | | wv 64 |
. . . . . . . . 9
⊢ y:α:α |
7 | 4, 6 | weqi 76 |
. . . . . . . 8
⊢ [x:α =
y:α]:∗ |
8 | 5, 7 | weqi 76 |
. . . . . . 7
⊢ [(p:(α
→ ∗)x:α) = [x:α =
y:α]]:∗ |
9 | 8 | wl 66 |
. . . . . 6
⊢
λx:α [(p:(α
→ ∗)x:α) = [x:α =
y:α]]:(α → ∗) |
10 | 2, 9 | wc 50 |
. . . . 5
⊢ (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]):∗ |
11 | 10 | wl 66 |
. . . 4
⊢
λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]):(α → ∗) |
12 | 1, 11 | wc 50 |
. . 3
⊢ (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]])):∗ |
13 | 12 | wl 66 |
. 2
⊢
λp:(α → ∗) (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]])):((α → ∗) →
∗) |
14 | | df-eu 133 |
. 2
⊢
⊤⊧[∃! =
λp:(α → ∗) (∃λy:α (∀λx:α
[(p:(α → ∗)x:α) =
[x:α = y:α]]))] |
15 | 13, 14 | eqtypri 81 |
1
⊢ ∃!:((α
→ ∗) → ∗) |