| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > dfov1 | GIF version | ||
| Description: Forward direction of df-ov 73. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| dfov1.1 | ⊢ F:(α → (β → ∗)) |
| dfov1.2 | ⊢ A:α |
| dfov1.3 | ⊢ B:β |
| dfov1.4 | ⊢ R⊧[AFB] |
| Ref | Expression |
|---|---|
| dfov1 | ⊢ R⊧((FA)B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfov1.4 | . 2 ⊢ R⊧[AFB] | |
| 2 | 1 | ax-cb1 29 | . . 3 ⊢ R:∗ |
| 3 | dfov1.1 | . . . 4 ⊢ F:(α → (β → ∗)) | |
| 4 | dfov1.2 | . . . 4 ⊢ A:α | |
| 5 | dfov1.3 | . . . 4 ⊢ B:β | |
| 6 | 3, 4, 5 | df-ov 73 | . . 3 ⊢ ⊤⊧(( = [AFB])((FA)B)) |
| 7 | 2, 6 | a1i 28 | . 2 ⊢ R⊧(( = [AFB])((FA)B)) |
| 8 | 1, 7 | ax-eqmp 45 | 1 ⊢ R⊧((FA)B) |
| Colors of variables: type var term |
| Syntax hints: → ht 2 ∗hb 3 kc 5 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
| This theorem was proved from axioms: ax-syl 15 ax-trud 26 ax-cb1 29 ax-eqmp 45 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: eqcomi 79 mpbi 82 ceq12 88 leq 91 eqtri 95 |
| Copyright terms: Public domain | W3C validator |