Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > mpbi | GIF version |
Description: Deduction from equality inference. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
mpbi.1 | ⊢ R⊧A |
mpbi.2 | ⊢ R⊧[A = B] |
Ref | Expression |
---|---|
mpbi | ⊢ R⊧B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi.1 | . 2 ⊢ R⊧A | |
2 | weq 41 | . . 3 ⊢ = :(∗ → (∗ → ∗)) | |
3 | 1 | ax-cb2 30 | . . 3 ⊢ A:∗ |
4 | mpbi.2 | . . . 4 ⊢ R⊧[A = B] | |
5 | 3, 4 | eqtypi 78 | . . 3 ⊢ B:∗ |
6 | 2, 3, 5, 4 | dfov1 74 | . 2 ⊢ R⊧(( = A)B) |
7 | 1, 6 | ax-eqmp 45 | 1 ⊢ R⊧B |
Colors of variables: type var term |
Syntax hints: ∗hb 3 = ke 7 [kbr 9 ⊧wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-eqmp 45 ax-eqtypi 77 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: mpbir 87 eqtri 95 ax4g 149 ax4 150 cla4v 152 pm2.21 153 dfan2 154 mpd 156 notval2 159 notnot1 160 con2d 161 ecase 163 exlimdv2 166 exlimd 183 alnex 186 exnal1 187 exmid 199 notnot 200 ax3 205 ax11 214 ax13 216 ax14 217 |
Copyright terms: Public domain | W3C validator |