Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > eqtri | GIF version |
Description: Transitivity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
eqtri.1 | ⊢ A:α |
eqtri.2 | ⊢ R⊧[A = B] |
eqtri.3 | ⊢ R⊧[B = C] |
Ref | Expression |
---|---|
eqtri | ⊢ R⊧[A = C] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . 2 ⊢ = :(α → (α → ∗)) | |
2 | eqtri.1 | . 2 ⊢ A:α | |
3 | eqtri.2 | . . . 4 ⊢ R⊧[A = B] | |
4 | 2, 3 | eqtypi 78 | . . 3 ⊢ B:α |
5 | eqtri.3 | . . 3 ⊢ R⊧[B = C] | |
6 | 4, 5 | eqtypi 78 | . 2 ⊢ C:α |
7 | 1, 2, 4, 3 | dfov1 74 | . . 3 ⊢ R⊧(( = A)B) |
8 | 1, 2 | wc 50 | . . . 4 ⊢ ( = A):(α → ∗) |
9 | 8, 4, 5 | ceq2 90 | . . 3 ⊢ R⊧[(( = A)B) = (( = A)C)] |
10 | 7, 9 | mpbi 82 | . 2 ⊢ R⊧(( = A)C) |
11 | 1, 2, 6, 10 | dfov2 75 | 1 ⊢ R⊧[A = C] |
Colors of variables: type var term |
Syntax hints: → ht 2 ∗hb 3 kc 5 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: 3eqtr4i 96 hbc 110 hbl 112 ovl 117 alval 142 exval 143 euval 144 notval 145 imval 146 orval 147 anval 148 ax4g 149 dfan2 154 ex 158 notval2 159 olc 164 orc 165 exlimdv 167 cbvf 179 exlimd 183 exmid 199 ax8 211 ax10 213 ax11 214 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |