| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > exnal1 | GIF version | ||
| Description: Forward direction of exnal 201. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| alnex1.1 | ⊢ A:∗ |
| Ref | Expression |
|---|---|
| exnal1 | ⊢ (∃λx:α (¬ A))⊧(¬ (∀λx:α A)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wex 139 | . . . 4 ⊢ ∃:((α → ∗) → ∗) | |
| 2 | wnot 138 | . . . . . 6 ⊢ ¬ :(∗ → ∗) | |
| 3 | alnex1.1 | . . . . . 6 ⊢ A:∗ | |
| 4 | 2, 3 | wc 50 | . . . . 5 ⊢ (¬ A):∗ |
| 5 | 4 | wl 66 | . . . 4 ⊢ λx:α (¬ A):(α → ∗) |
| 6 | 1, 5 | wc 50 | . . 3 ⊢ (∃λx:α (¬ A)):∗ |
| 7 | 3 | notnot1 160 | . . . . . 6 ⊢ A⊧(¬ (¬ A)) |
| 8 | wtru 43 | . . . . . 6 ⊢ ⊤:∗ | |
| 9 | 7, 8 | adantl 56 | . . . . 5 ⊢ (⊤, A)⊧(¬ (¬ A)) |
| 10 | 9 | alimdv 184 | . . . 4 ⊢ (⊤, (∀λx:α A))⊧(∀λx:α (¬ (¬ A))) |
| 11 | wal 134 | . . . . . . 7 ⊢ ∀:((α → ∗) → ∗) | |
| 12 | 2, 4 | wc 50 | . . . . . . . 8 ⊢ (¬ (¬ A)):∗ |
| 13 | 12 | wl 66 | . . . . . . 7 ⊢ λx:α (¬ (¬ A)):(α → ∗) |
| 14 | 11, 13 | wc 50 | . . . . . 6 ⊢ (∀λx:α (¬ (¬ A))):∗ |
| 15 | 14 | id 25 | . . . . 5 ⊢ (∀λx:α (¬ (¬ A)))⊧(∀λx:α (¬ (¬ A))) |
| 16 | 4 | alnex 186 | . . . . . 6 ⊢ ⊤⊧[(∀λx:α (¬ (¬ A))) = (¬ (∃λx:α (¬ A)))] |
| 17 | 14, 16 | a1i 28 | . . . . 5 ⊢ (∀λx:α (¬ (¬ A)))⊧[(∀λx:α (¬ (¬ A))) = (¬ (∃λx:α (¬ A)))] |
| 18 | 15, 17 | mpbi 82 | . . . 4 ⊢ (∀λx:α (¬ (¬ A)))⊧(¬ (∃λx:α (¬ A))) |
| 19 | 10, 18 | syl 16 | . . 3 ⊢ (⊤, (∀λx:α A))⊧(¬ (∃λx:α (¬ A))) |
| 20 | 6, 19 | con2d 161 | . 2 ⊢ (⊤, (∃λx:α (¬ A)))⊧(¬ (∀λx:α A)) |
| 21 | 20 | trul 39 | 1 ⊢ (∃λx:α (¬ A))⊧(¬ (∀λx:α A)) |
| Colors of variables: type var term |
| Syntax hints: → ht 2 ∗hb 3 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ¬ tne 120 ∀tal 122 ∃tex 123 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 df-ex 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |