| Step | Hyp | Ref
| Expression |
| 1 | | alnex1.1 |
. . . . . 6
⊢ A:∗ |
| 2 | | wfal 135 |
. . . . . 6
⊢
⊥:∗ |
| 3 | | wnot 138 |
. . . . . . . . 9
⊢ ¬ :(∗
→ ∗) |
| 4 | 3, 1 | wc 50 |
. . . . . . . 8
⊢ (¬ A):∗ |
| 5 | 4 | ax4 150 |
. . . . . . 7
⊢ (∀λx:α (¬
A))⊧(¬ A) |
| 6 | 5 | ax-cb1 29 |
. . . . . . . 8
⊢ (∀λx:α (¬
A)):∗ |
| 7 | 1 | notval 145 |
. . . . . . . 8
⊢
⊤⊧[(¬ A) =
[A ⇒ ⊥]] |
| 8 | 6, 7 | a1i 28 |
. . . . . . 7
⊢ (∀λx:α (¬
A))⊧[(¬ A) = [A ⇒
⊥]] |
| 9 | 5, 8 | mpbi 82 |
. . . . . 6
⊢ (∀λx:α (¬
A))⊧[A ⇒ ⊥] |
| 10 | 1, 2, 9 | imp 157 |
. . . . 5
⊢ ((∀λx:α (¬
A)), A)⊧⊥ |
| 11 | | wal 134 |
. . . . . 6
⊢ ∀:((α
→ ∗) → ∗) |
| 12 | 4 | wl 66 |
. . . . . 6
⊢
λx:α (¬ A):(α
→ ∗) |
| 13 | | wv 64 |
. . . . . 6
⊢ y:α:α |
| 14 | 11, 13 | ax-17 105 |
. . . . . 6
⊢
⊤⊧[(λx:α ∀y:α) = ∀] |
| 15 | 4, 13 | ax-hbl1 103 |
. . . . . 6
⊢
⊤⊧[(λx:α
λx:α (¬ A)y:α) = λx:α (¬
A)] |
| 16 | 11, 12, 13, 14, 15 | hbc 110 |
. . . . 5
⊢
⊤⊧[(λx:α (∀λx:α (¬
A))y:α) =
(∀λx:α (¬
A))] |
| 17 | 2, 13 | ax-17 105 |
. . . . 5
⊢
⊤⊧[(λx:α
⊥y:α) = ⊥] |
| 18 | 10, 16, 17 | exlimd 183 |
. . . 4
⊢ ((∀λx:α (¬
A)), (∃λx:α
A))⊧⊥ |
| 19 | 18 | ex 158 |
. . 3
⊢ (∀λx:α (¬
A))⊧[(∃λx:α
A) ⇒ ⊥] |
| 20 | | wex 139 |
. . . . . 6
⊢ ∃:((α
→ ∗) → ∗) |
| 21 | 1 | wl 66 |
. . . . . 6
⊢
λx:α A:(α
→ ∗) |
| 22 | 20, 21 | wc 50 |
. . . . 5
⊢ (∃λx:α
A):∗ |
| 23 | 22 | notval 145 |
. . . 4
⊢
⊤⊧[(¬ (∃λx:α
A)) = [(∃λx:α
A) ⇒ ⊥]] |
| 24 | 6, 23 | a1i 28 |
. . 3
⊢ (∀λx:α (¬
A))⊧[(¬ (∃λx:α
A)) = [(∃λx:α
A) ⇒ ⊥]] |
| 25 | 19, 24 | mpbir 87 |
. 2
⊢ (∀λx:α (¬
A))⊧(¬ (∃λx:α
A)) |
| 26 | 1 | 19.8a 170 |
. . . . . 6
⊢ A⊧(∃λx:α
A) |
| 27 | | wtru 43 |
. . . . . 6
⊢
⊤:∗ |
| 28 | 26, 27 | adantl 56 |
. . . . 5
⊢ (⊤, A)⊧(∃λx:α
A) |
| 29 | 28 | con3d 162 |
. . . 4
⊢ (⊤, (¬
(∃λx:α
A)))⊧(¬ A) |
| 30 | 29 | trul 39 |
. . 3
⊢ (¬ (∃λx:α
A))⊧(¬ A) |
| 31 | 3, 13 | ax-17 105 |
. . . 4
⊢
⊤⊧[(λx:α ¬
y:α) = ¬ ] |
| 32 | 20, 13 | ax-17 105 |
. . . . 5
⊢
⊤⊧[(λx:α ∃y:α) = ∃] |
| 33 | 1, 13 | ax-hbl1 103 |
. . . . 5
⊢
⊤⊧[(λx:α
λx:α Ay:α) = λx:α
A] |
| 34 | 20, 21, 13, 32, 33 | hbc 110 |
. . . 4
⊢
⊤⊧[(λx:α (∃λx:α
A)y:α) =
(∃λx:α
A)] |
| 35 | 3, 22, 13, 31, 34 | hbc 110 |
. . 3
⊢
⊤⊧[(λx:α (¬
(∃λx:α
A))y:α) =
(¬ (∃λx:α
A))] |
| 36 | 30, 35 | alrimi 182 |
. 2
⊢ (¬ (∃λx:α
A))⊧(∀λx:α (¬
A)) |
| 37 | 25, 36 | dedi 85 |
1
⊢
⊤⊧[(∀λx:α (¬
A)) = (¬ (∃λx:α
A))] |