ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad5ant125 Unicode version

Theorem ad5ant125 1243
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad5ant.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
ad5ant125  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ta )  /\  et )  /\  ch )  ->  th )

Proof of Theorem ad5ant125
StepHypRef Expression
1 ad5ant.1 . . . 4  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expia 1207 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
322a1d 23 . 2  |-  ( (
ph  /\  ps )  ->  ( ta  ->  ( et  ->  ( ch  ->  th ) ) ) )
43imp41 353 1  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ta )  /\  et )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator